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Preface

This volume reports the proceedings of the 15th Italian Workshop on Neural
Nets WIRN04. The workshop, held in Perugia from September 14th to 17th
2004 has been jointly organized by the International Institute for Advanced
Scientific Studies “Eduardo R. Caianiello” (IIASS) and the Società Italiana Reti
Neuroniche (SIREN).

This year the Conference has constituted a joint event of three associations:
Associazione Italiana per l’Intelligenza Artificiale (AIIA), Gruppo Italiano di
Ricercatori in Pattern Recognition (GIRPR), Società Italiana Reti Neuroniche
(SIREN) within the conference CISI-04 (Conferenza Italiana sui Sistemi Intel-
ligenti - 2004) combining the three associations’ annual meetings. The aim was
to examine Intelligent Systems as a joint topic, pointing out synergies and dif-
ferences between the various approaches.

The volume covers this matter from the Neural Networks and related fields
perspective. It contains invited review papers and selected original contribu-
tions presented in either oral or poster sessions by both Italian and foreign re-
searchers. The contributions have been assembled, for reading convenience, into
five sections. The first two collect papers from pre-WIRN workshops focused on
Computational Intelligence Methods for Bioinformatics and Biostatistics, and
Computational Intelligence on Hardware, respectively. The remaining sections
concern Architectures and Algorithms, Models, and Applications.

The Editors would like to thank the invited speakers and all the contributors
whose highly qualified papers helped the success of the Workshop. Finally, special
thanks go to the referees for their accurate work.

December 2004 Bruno Apolloni
Maria Marinaro

Roberto Tagliaferri
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PROGENGRID:
A GRID FRAMEWORK FOR BIOINFORMATICS

Giovanni Aloisio, Massimo Cafaro, Sandro Fiore, and Maria Mirto
CACT, University of Lecce, Italy & SPACI Consortium, Italy

{giovanni.aloisio, massimo.cafaro, sandro.fiore, maria.mirto}@unile.it

Abstract Important issues in bioinformatics are the difficulties for non computer experts
to use bioinformatics tools, the transparent access to large biological data sets,
and the exploitation of large computing power. Moreover, often such tools and
databases are developed by independent groups, so the task of enabling their
composition and cooperation is even more difficult. Integrating Computational
Grid and Web Services technologies can be a key solution to simplify interac-
tion between bioinformatics tools and biological databases. This paper presents
ProGenGrid (Proteomics & Genomics Grid), a distributed and ubiquitous grid
environment, accessible through the web, for supporting "in silico" experiments
in bioinformatics.

Keywords: Bioinformatics, Drug Design, Workflow, Grid Computing, Computational Grid,
Web Services.

1. Introduction

The growing access to large biological data sets, plus rapidly developing
theory behind pathways, such as systems biology, genomics, proteomics, and
so on, will give rise to large-scale "in silico" models. The combination of such
different competences and knowledge will have an enormous impact. To re-
alize this effect life scientists need tools to produce data, keep track of it, run
it in models, and more. A series of new techniques and tools will help such
users (e.g. biologists) feel this forward momentum in bioinformatics. Infor-
mation technology can play a significant role by transforming those data into
knowledge that will drive new advancements in the industry. One solution
for handling and analyzing so much disparate data comes from Computational
Grid [Foster and Kesselman, 1998], which connects many computers within
and between institutions through middleware software.
One of the main problems in bioinformatics is the increasing availability of
different, often heterogeneous, biological data sets. Indeed, different data sets

1

B. Apolloni et al. (eds.), Biological and Artificial Intelligence Environments, 1–9 
© 2005 Springer. Printed in the Netherlands. 



2

may contain different aspects of the same object. Data integration should give a
homogeneous view of information contained in different databases, and should
allow working with a single virtual biological data source. As a result, scien-
tists need tools that keep track of data and relate one data set to another. High
performance, data integration and collaboration requirements can be satisfied
by Computational Grids. The Life Science Grid Research Group [LSG-RG,
2003] established under the Global Grid Forum, underlined as a Grid frame-
work, enhanced through specific services, could satisfy bioinformatics require-
ments. Indeed, some emerging Bioinformatics Grids, such as Asia Pacific Bi-
oGRID and myGrid [myGrid Project, 2001], aim to allow: (i) deployment,
distribution and management of needed biological software components; (ii)
harmonized standard integration of various software layers and services; (iii)
powerful, flexible policy definition, control and negotiation mechanism for
a collaborative grid environment. So, bioinformatics platforms need to offer
powerful and high level modelling techniques to ease the work of e-scientists,
and should exploit Computational Grids transparently and efficiently. The pro-
posed solution aims to satisfy those requirements and is based on the following
key approaches: web/grid services, workflow, ontologies and data integration
through the Grid.

The rest of the paper is organized as follows. Section 2 presents the ProGen-
Grid architecture, and describes its main components, such as data access, on-
tology, workflow modelling layers. Section 3 describes an initial prototype,
Section 4 discusses a simple case study through which an high level service,
namely drug design, is offered. Section 5 concludes the paper and discusses
future work.

2. System Architecture

ProGenGrid (see Fig. 1) is a software platform exploiting a Service Oriented
Architecture (SOA) that wraps programs and data as Web Services and offers
tools for their composition to provide ease of use, re-use and better quality of
results. Services are divided in two classes:
Application-level services, that allow (i) Composition of complex activities
using Workflow technology for designing, scheduling and controlling bioin-
formatics services; (ii) Collaborative working for the sharing of experimental
results.
Middleware-level services, that allow (iii) Biological database access: inter-
action with distributed biological data sources accessible through a uniform
and standard front-end; (iv) Discovery and use of existing analysis tools avail-
able as Web Services for their sharing; (v) Access control list to carry out the
authorization process for a specific data bank. Such services will be used by the
developers to build enhanced services and will be available in a first prototype,
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Figure 1. ProGenGrid Architecture

through a web portal. The main components of the system (see Fig. 1), that are
built on top of Globus Toolkit [Foster and Kesselman, 1997] and are based on
Web Services technology, are: Data Access Service, Ontology, Workflow, and
Web Portal. To date, the overall system has been designed and the WorkFlow
Management System has been developed.

2.1 Data Access Service

In order to access heterogeneous biological data sources (stored either in
flat files or in relational databases), a Data Access Service (DAS) offering data
integration and data federation services has been planned (see Fig. 2).
Data integration is responsible for mapping high level user’s requests to low
level SQL queries. This mapping leverages the Metadata Ontology Reposi-
tory which contains semantic information about proteomics and genomics data
sources. This level provides a first step in the data virtualization process, struc-
turing or restructuring data coming from different sources, thus managing com-
plex queries. At the lowest level the access to physical data sources is granted
by specific wrappers created at run-time.
Data federation is responsible for allowing interconnections between appli-
cation and data sources. Often works with brokers which bridge the gap be-
tween data source and requester. This process provides local references to data
sources and basic support for data result aggregation.

To date, in our infrastructure the integration service is not completely de-
veloped whereas the federation broker is based on the GRelC [Aloisio et al.,
2004b] Server (a basic component of the GRelC toolkit), which has to hide,
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Figure 2. Data Access Service (DAS) Architecture

in a grid environment, the database heterogeneity and other low level details,
providing secure access to data sources by means of the Globus Toolkit Grid
Security Infrastructure [Tuecke, 2001]. It offers a robust, efficient and transpar-
ent access front end to relational (e.g. MySQL, Postgres, Oracle, are supported
DBMS) and not-relational data sources (e.g. flat files). The queries are exe-
cuted on a remote DBMS and the results returned by the wrapper and broker
are then combined and returned to the application in a single XML record-
set. Regarding the integration service, we plan to model the semantics of data
sources and their relations through ontologies: the goal is to support the work
of the wrapper module so that the translation from an abstract query into a set
of data source specific commands can be driven by the ontology.

2.2 Ontology

In our system, the ontology is used at two levels: Workflow Validation dur-
ing the composition of tasks without known applications details (such as data
type, etc.) and conversion of input data, if needed. In particular we classified
ProGenGrid components as: data banks, bioinformatics algorithms, graphics
tools, drug design tools and input data types. This initial ontology, written in
DAML+OIL [Daml, 2000], has been stored in a relational database; Data Ac-
cess, in particular for guaranteeing: (i) Semantic integration of different data
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sources as explained in the previous Section. Currently we are using GeneOn-
tology; (ii) Analysis of stored output data coming from different experiments.

2.3 WorkFlow

We use workflow technology to model and design complex "in silico" ex-
periments composed by different web/grid services. WorkFlow Management
Systems (WFMSs) support the enactment of processes by coordinating the
temporal and logical order of the elementary process activities and supplying
the data resources necessary for the execution of the functions. A WFMS: (i)
allows a clear business process (biological experiment) definition and repro-
ducibility because the process, the input parameters and the program versions
used are clearly defined and these have not to be redefined at any time; (ii)
and performs complex computations which are executed repeatedly by one or
more scientists. It automatically executes large computations as needed for
automated optimization or robustness evaluation.

3. ProGenGrid Implementation

We implemented a first prototype of the system (see Fig. 3) that supports
the phases of application design, execution and monitoring, as described in the
following.

1 Component discovery. It discovers available bioinformatics tools, data
banks and graphics tools modeled through the ontology. Since we are
considering such components as grid services, we plan to extend the
GridLab MDS web services [Aloisio et al., 2003] to manage registration
and retrieval of such grid services.

2 Workflow editing. Discovered components are made available to a se-
mantic editor that allows the design (i.e. the activities are modeled using
UML) of an experiment (abstract workflow). During workflow creation
the abstract workflow is validated through rules derived by metadata and
ontology.

3 Execution Plan. The abstract workflow is translated into an "execu-
tion plan" (concrete workflow) containing the activities order and the
logical name of the resources (needed for their discovery in a Grid en-
vironment). The execution plan (EP) is coded through a set of XML
instructions extending the GGF workflow specification [Bivens, 2001].

4 Application execution. The ProGenGrid scheduler schedules the con-
crete workflow in a computational grid. It discovers the needed services
querying the GridLab Monitoring and Discovery Service (MDS), built
on top of the Globus MDS [MDS, 1998]. Such services are registered
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Figure 3. Snapshot of ProGenGrid prototype

through the MDS GridLab Web Services and are classified using an on-
tology. The scheduler invokes the Web Services related to each activity,
and updates the EP reflecting the workflow status.

5 Application monitoring. Whenever workflow activities are started/fini-
shed, the system visualizes the advancement of the workflow execution
using a graphical utility.

Fig. 3 shows a snapshot of ProGenGrid: the left upper frame shows the
available resources installed on the testbed Grid; the left bottom frame shows
graphically the status of application execution; the right frame shows the de-
signed workflow using the UML notation [Eshuis and Wieringa, 2002] [OMG,
2003]; and finally the bottom central frame shows the application execution
log. The current version is available as a Java Applet and we plan to integrate
it in our web portal.

4. Drug Design

An important service offered by our system is drug design. This process in-
volves various steps beginning from the synthesis in laboratory of a compound,
candidate drug, to the introduction of the therapeutic agent or drug into mar-
ket. Using a traditional approach this process can take many years (12 - 15)
due to clinical testing for establishing the toxicology and possible side effects.
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The R&D sections of many pharmaceutical companies aim at reducing the re-
search timeline in the discovery stage. In particular, molecular modelling has
emerged as a popular methodology for drug design combining different dis-
ciplines such as computational chemistry and computer graphics. It can be
redesigned as a distributed system involving many resources for the screening
of a large number (of the order of a million) of ligand records or molecules of
compounds in a chemical database to identify those that are potential drugs,
taking advantage of HPC technologies such as clusters and Grids for large-
scale data exploration. This process is called molecular docking and predicts
how small molecules, drug candidates, bind to an enzyme or a protein receptor
of known three-dimensional (3D) structure. The receptor/ligand binding is a
compute and data intensive task due to the large data sets of compounds to be
screened.

Our goal is to use Grid technologies to provide large-scale parallel screen-
ing and docking, reducing the total computation time and costs of the process.
So, scientists simulate receptor-ligand docking and get a score as a criterion
for screening. As an example, we model the drug design application with our
workflow editor (Fig. 3) involving the needed software in this process. In par-
ticular, we consider the DOCK [Ewing and Kuntz, 1996] software, a popular
tool for receptor-ligand docking. It takes as input files of ligand and recep-
tor and outputs a score and 3D structure of docked ligand. In particular the
workflow starts with crystal coordinates of target receptor, i.e < IDProtein >
or its FASTA format (in this example, the protein target is 1NXB), then the
AutoMs [AutoMS, 1996] tool is used to generate molecular surface for re-
ceptor and Sphgen [Sphgen, 1996] generates spheres to fill in the active site
(the centers of the spheres become potential locations for ligand atoms). The
DOCK software matches the sphere centers to the ligand atoms (extracted by
structural databases such as PDB [Berman et al., 2000]), and uses scoring grid
(generated by the grid program) to determine possible orientations for the lig-
and. Finally the Rasmol [Sayle and Milner-White, 1995] tool visualizes the
docked ligand protein. The main issues raised by this kind of application are
due to the computation and to the heterogeneity of the interfaces to the in-
volved tools. Indeed the screening can involve million of ligands and hence re-
quires high performance computing resources, the size of repositories contain-
ing these ligands often is in the range of gigabytes and the involved tools must
be compiled and installed. To solve partially the computational time issue, we
would like to transform the DOCK program (but also other existing molecular
docking applications, such as GAMESS - General Atomic and Molecular Elec-
tronic Structure System - [Schmidt et al., 1993] and AUTODOCK - Automated
Docking of Flexible Ligand to Micromolecules - [Goodsell et al., 1996]) into a
parameter sweep application, for execution on distributed systems. It is worth
noting here that we do not intend to update the existing sequential docking
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application but to partition the input data files to submit each dock job using
our libraries, GRB and GRB-GSIFTP [Aloisio et al., 2001]. Moreover, we are
developing a unique front-end to enable access to ligand molecules in the 3D-
structure databases from remote resources (that are stored on a few grid nodes
given the large storage required), including related indexing mechanisms to fa-
cilitate reading the compounds [Aloisio et al., 2004a], while a resource broker
is used for scheduling and on-demand processing of docking jobs on grid re-
sources. Finally, to solve the interface heterogeneity issue, the docking tools
will be available as Web Services, so the bioinformaticians will not need to
know details about installation or configuration of these tools.

5. Conclusions and Future Work

ProGenGrid is a software platform allowing the composition of existing
bioinformatics resources, wrapped as Web Services, to create complex work-
flows. It offers tools for services composition, workflow execution and mon-
itoring. Moreover, it uses a data integration and federation approach to sim-
plify access to heterogeneous biological databases. The overall architecture
and a first prototype have been described. Currently the architecture is partly
implemented and future work will provide the full implementation that will
be validated measuring the performances with respect to other approaches of
high throughput applications in the field of drug design [Buyya et al., 2003].
Moreover, future work will regard the implementation of an efficient workflow
scheduler that dynamically querying the GridLab MDS will be able to choose
among different available Web Services to obtain an effective schedule.
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Abstract Head and neck squamous cell carcinoma (HNSCC') has already been proved 
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adding genetic information to clinical data. DNA appears to regulate most of
the inner workings of the human body; it can be however very difficult to es-
tablish a clear gene-action relationship, as the biochemical effects are hard to
trace through the human body. Moreover, genes often interact with each other,
and some singularly “detrimental” or ineffective alleles can become beneficial
when found together. These issues suggest the use of machine learning algo-
rithms which can extract complex patterns from the observed data, and present
them to the physicians in a human-readable form, amenable to further investi-
gation.

In this work we consider the development of head and neck squamous cell
carcinoma (HNSCC). This kind of cancer is mainly associated with smoking
and alcohol drinking, but genetic polymorphism of enzymes involved in the
metabolism of tobacco carcinogens and in the DNA repair mechanisms can
influence the risk factor. The patients were thus described with a combination
of clinical data (sex, age, smoking and drinking habits) and genetic data (the
polymorphism of eleven genes believed to be relevant to this disease) — along
with a single value which stated if they had cancer or not when the database
was compiled.

We developed an XCS classifier system tailored to work with the different
types of values found in this data set (boolean, integer, real and gene-class).
This kind of classifier system was chosen for its capability to build very general
accurate rules [Kovacs, 1997], whose interpretation is immediate. We then
extended it with a ruleset reduction algorithm, in order to obtain a small set of
mixed clinical and genetic rules that could suggest to physicians which genes
promote or prevent oral cancer, and the direction to follow for more focused
genetic research.

2. The problem

The data set we analyzed was designed to explore the influence of genotype
on the chance to develop head and neck squamous cell carcinoma (HNSCC).
It is already well-known that this kind of cancer is strictly connected with
smoking and alcohol-drinking habits, along with age and sex. The individual
risk however could be modified by genetic factors; thus the data was enriched
with genotype information, regarding eleven genes involved with carcinogen-
metabolizing (CCND1, NQO1, EPHX1, CYP2A6, CYP2D6, CYP2E1, NAT1,
NAT2, GSTP1) and DNA repair systems (OGG1, XPD).

Nine of these genes have two allelic variants; let’s call them a1 and a2.
Since the DNA contains two copies of each gene, there exist three possible
combinations: a1a1, a2a2 (the homozygotes) and a1a2 (the heterozygote —
order does not matter). The homozygotes where represented with values 0 and
2, while the heterozygote with 1. Due to dominance, the heterozygote is in fact
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equivalent to one of the homozygotes; however, for many of the considered
genes this dominance is not known. So class 1 can be either equivalent to class
0, or to class 2. The remaining two genes have 4 allelic variants, which result in
9 combinations; they were sorted by their activity level, and put on an integer
scale from 0 to 8.

The full data consists of 355 records, with 124 positive elements and 231
negative. They were collected with different purposes and in different periods;
this has led to many missing data among the genotypic information of patients.
Actually only 122 elements have complete genotypic description; the remain-
ing 233 have missing values ranging from 1 to 9, with the average being 3.58.
As an overall figure, of the 11 × 355 = 3905 genotype values, just 3070 are
present: 21% of the genotype information is missing.

3. XCS

Classical machine learning offers a few algorithms which comply with our
requirements (such as decision tree induction [Quinlan, 1986], inductive logic
programming [Muggleton, 1991], or bayesian networks [Heckerman et al.,
1995]); we choose to employ a relatively new algorithm: XCS.

In [Wilson, 1995] and then in [Wilson, 1998], Wilson proposes XCS as
an evolution of Holland’s Learning Classifier Systems (LCS) [Holland, 1976],
a machine learning technique which combines reinforcement learning, evo-
lutionary computing and other heuristics to produce adaptive systems. Simi-
larly to its ancestors, an XCS maintains and evolves a population of classifiers
(rules) through a genetic algorithm. These rules are used to match environmen-
tal inputs and choose subsequent actions. Environment’s reward to the actions
is then used to modify the classifiers in a reinforcement learning process.

XCS introduces a measure of classifiers’ fitness based on their accuracy, i.e.
the reliability of their prediction of the expected payoff, and applies the GA
only on the action set, the subset of classifiers which lead to the choice of the
action. This gives the system a strong tendency to develop accurate and general
rules to cover problem space and allow the system’s “knowledge” to be clearly
seen. In the following we provide a brief description of XCS. For full details
see [Butz and Wilson, 2001].

System description

The core component of XCS is a set of classifiers, that is condition-action-
prediction rules, where the condition specifies a pattern over the input states
provided by the environment, the action is the action proposed (e.g. a classifi-
cation), and the prediction is the payoff expected by the system in response to
the action. Additionally each classifiers has associated an estimate of the error
made in payoff predictions, and a fitness value.
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XCS implements a reinforcement learning process: at every step the system
is presented an individual from the data set and it examines its set of classi-
fiers to select those matching the input situation. These classifiers form the
match set. Then for each possible action the system uses the fitness–weighted
average prediction of the corresponding classifiers to estimate environmental
reward. At this point, the XCS can choose the best action looking for the high-
est predicted reward. However, during learning, the action is usually selected
alternating the previous criterion with random choice, useful to better explore
the problem space. The actual reward returned by the environment is then used
to update the classifiers in the action set, i.e. the subset of the match set cor-
responding to the selected action. A genetic algorithm is also executed on this
set to discover new interesting classifiers.

To reduce the number of rules developed, XCS implements various tech-
niques, such as the use of macroclassifiers, the subsumption and the deletion
mechanisms. In fact the system uses a population of macroclassifiers, i.e. nor-
mal classifiers with a numerosity parameter, representing the number of their
instances (microclassifiers). This helps in keeping track of the most useful
rules and improves computational performance at no cost.

Subsumption is used to help generalization: when the GA creates a new
classifier with a condition logically subsumed by his parent (i.e. matching a
subset of the inputs matched by the parent’s) it is not added to the population,
but the parent’s numerosity is incremented. A similar check is also occasion-
ally done among all the classifiers in the current action set.

Finally the deletion mechanism keeps the number of microclassifiers under
a fixed bound. The classifier to be removed is chosen with a roulette wheel
selection biased towards low–fitness individuals and assuring approximately
equal number of classifiers in each action set.

As already stated this process leads to the evolution of more and more gen-
eral rules. For each classifier we can define a measure of generality follow-
ing [Wilson, 2001b], ranging from 0 (most specific) to 1 (most general). A
possible termination criterion is to stop evolution when the average generality
value of the population gets stable.

4. Adaptation to the problem

In facing the problem of HNSCC development prediction from clinical and
genetic data, we looked for a method which could provide a meaningful insight
of its classification process, instead of focusing only on accuracy. In this re-
gard, XCS showed many advantages over other well-established classification
systems (for experimental comparison between XCS and other machine learn-
ing algorhitms, see for instance [Bagnall and Cawley, 2003]). As seen in Wil-
son’s works on Wisconsin Breast Cancer data [Wilson, 2001b] and Holmes’
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ones on epidemiologic surveillance data [Holmes, 2000] (using EpiCS, a simi-
lar classifier system), the use of explicit rules to match the input data allows an
easy visualization of the criteria the system employs in each classification and
a comparison with physicians’ previous knowledge.

As we have seen above, the data set is characterized by the massive pres-
ence of missing data, especially in the genotype part. In these cases, essen-
tially every classification technique is expected to experience a degradation of
performance. However XCS allows at least their seamless management: an
individual with missing data is matched only by those classifiers which have
a wildcard on that value. The rationale underlying this choice is to avoid tak-
ing decisions based on data we do not have. This is different from Holmes’
approach in [Holmes and Bilker, 2002], where missing values are matched by
every classifier — thus producing a kind of average value for that data.

Data type integration

Another key aspect which lead us to choose XCS was the easiness of inte-
gration of different kind of data. In fact, the type of the information contained
in the data set varies from binary (i.e. sex), to continuous-valued (i.e. age,
indicators of smoking and alcohol-drinking habits), and to a special class data
for the genotype. Whilst the original formulation of XCS is targeted to binary
input, the shift to other data types, such as real or integer ones, has already
been proved to be very easy (see respectively [Wilson, 2001b; Wilson, 2000]).

For the integer and real data types, our implementation is based on those
proposed in the cited literature. But for the genotypic values we needed a
slightly different treatment. Nine of the genes considered have two allelic vari-
ants, thus we need three classes (considering also the heterozygote) for the
input values, but the classifiers have in fact to merge the heterozygote with
either one of the homozygotes. So the values we used are the following: as
input we have 00 for a1a1, 11 for a1a2, and 22 for a2a2; in classifiers 11 is not
allowed, but we admit 01 (matching 00 and 11), 12 (matching 11 and 22) and
## (matching all values).

Ruleset reduction

During learning XCS tends to evolve an accurate and complete mapping
of condition-action-prediction rules matching the data. Consequently, in par-
ticular on a very sparse data set as in our study, the final number of rules is
quite high. Similar problems, which break the knowledge visibility property,
were experienced in other studies on “real” data sets [Wilson, 2001b; Wilson,
2001a]. These works suggest to let the system evolve many steps after reaching
the maximum performance, and then to extract a small subset of rules which
reach the same performance level. This is the function of the Compact Ruleset
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Algorithm (CRA), first proposed by Wilson [Wilson, 2001a], which we imple-
mented with minor modifications.

5. First results

We had two aims in testing the system: evaluating its ability to correctly
classify unseen data after training and checking if it could find interesting rules.
We applied a ten–fold cross–validation, running the XCS ten times on each
fold, in order to obtain average results (independent of a particular random
seed). Each experiment was allowed to run for 500, 000 steps, as a few tests
showed that the generality value reached its maximum at this point. Moreover
we employed a crossover rate of 0.80 and a mutation rate of 0.04, while the
other parameters were chosen following [Butz and Wilson, 2001]. The exper-
iments were run twice, with a population of 800 and 6400 microclassifiers.
Final results are summarized in Table 1, while the evolution of the system is
plotted in Figs. 1 and 2.

In the test with 6400 classifiers the accuracy on the training set reached
almost optimal value, quite better than in the 800 test. However the accuracy
on the test set was comparable and even slightly better in the 800 test. This
suggests that the high accuracy of the 6400 test is due to overfitting and lower
population sizes are preferable.

The graphs show a quite unexpected result regarding generality: in fact
while this value increases, there is not a corresponding increase in general-
ization, since the accuracy on the test set remains stable or even gets slightly
worse.

The CRA successfully extracted a small subset of the original rules which
maintained the maximum performance on the training set, while not getting
worse significantly on the test set. Actually it could be more interesting to
apply a pruning algorithm to the original population, designed to reduce the
model complexity in order to achieve better generalization. Differently from
CRA, such an algorithm should be allowed to lose some accuracy on the train-
ing set, in order to perform better on the test set.

Nevertheless the small sets of rules extracted made it feasible to manually
look for possibly interesting rules. As an example we provide in Table 2 two of
such rules in human readable form. The first rule is common knowledge redis-
covered by the system. Instead the second one has been judged interesting by
physicians: in fact previous studies already reported an increased lung cancer
risk associated to GSTP1 in combination with EPHX1 polymorphisms [To-
Figueras et al., 2001], so it will be interesting to investigate on the role of these
genes in relation to HNSCC risk.
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Table 1. Summary of the ten 10-fold cross validation experiments. Specificity and sensitivity
are both relative to the test set.

Max rules 6400 800
CRA Before After Before After

Rules 1659±91.9 47±5.6 403±10.7 47±5.8
Acc. (train) 99.4±0.4% 99.4±0.4% 93.2±0.3% 93.2±0.3%
Acc. (test) 75.3±5.2% 74.2±1.8% 76.9±2.8% 74.4±2.4%
Specificity 89.9±2.2% 76.9±3.5% 86.8±2.8% 81.5±2.4%
Sensitivity 50.1±9.3% 64.5±4.4% 60.2±5.1% 62.9±6.0%
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Figure 1. Plot of average evolution in the 6400 experiments.
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Figure 2. Plot of average evolution in the 800 experiments.
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Table 2. Examples of rules extracted by the system, with their correct/matched ratio.

IF age ≤ 40 THEN cancer=false (26/26)

IF smoke≥ 12 AND EPHX1∈ {11, 22} AND GSTP1= 00
THEN cancer=true (38/40)

6. Conclusions and future developments

In this work we applied an XCS system to the analysis of a mixed clinical
and genetic data set regarding the risk of developing HNSCC. The long-term
goal is to identify the genes actually involved in oral cancer, and highlight pos-
sible interactions between them. XCS has confirmed its flexibility in adapting
to different data types and seamless handling of missing values. The rules
extracted from the first experiments suggest that the system can produce inter-
esting results. Moreover, they are easily converted in human-readable form,
and can be immediately evaluated by physicians.

However, better accuracy on the cross-validation tests would be necessary
in order to reach a higher level of confidence in the rules; to achieve this goal,
several research directions are possible. For instance, this data set is clearly
noisy not only on some input variables (smoke and alcohol habits), but also
on the target: more than other diseases, cancer cannot be deterministically
predicted. Regarding the first issue, it would be useful to perform some tests on
the effects of noise in XCS. Concerning the target variable, a possible direction
is prediction of a risk factor instead of a raw class, as in [Holmes, 2000].

Another interesting aspect to investigate is the ruleset reduction algorithm:
CRA is mainly focused on maintaining the training performance achieved,
while a more pruning-like strategy could be beneficial for generalization.
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Abstract Mass Spectrometry (MS) can be used as a detector in High Performance Liq-
uid Chromatography (HPLC) systems or as a tool for direct protein/peptides
profiling from biological samples. Data Mining (DM) is the semi-automated ex-
traction of patterns representing knowledge implicitly stored in large databases.
The combined use of MS with DM is a novel approach in proteomic pattern
analysis and is emerging as an effective method for the early diagnosis of dis-
eases. We describe the workflow of a proteomic experiment for early detection
of cancer which combines MS and DM, giving details of sample treatment and
preparation, MS data generation, MS data preprocessing, data clustering and
classification.

Keywords: Proteomics, Mass Spectrometry, Data Mining, Breast Cancer, Biomarkers

1. Introduction

Proteomics analysis is becoming a powerful, widely used technique in order
to identify different molecular targets in different pathological conditions. In
particular, cancer is one of the most diffuse and dangerous diseases and for
this reason it is object of some scrupulous proteomic studies trying to exceed
the limitations of the conventional diagnostic strategies. The aim is to identify
some important markers for the prevention, the diagnosis and the treatment of
several kind of cancer.

Breast cancer is one of the most common type of cancer in women, although
it is known to affect men producing the same devastating effects. Recently,
through studying blood samples of families in which there is a history of breast
cancer, scientists have isolated and identified a gene linked to breast cancer. A
person who has this modified gene, labelled BRCA1 (meaning Breast Cancer
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Figure 1. Workflow of the proteomics experiment

1), has an 85% lifetime risk of developing breast cancer, as well as a signifi-
cantly higher risk of ovarian cancer. Being able to identify these genes through
particular markers associated with the gene, we will know which individuals
are more susceptible to cancer and therefore can follow the proper procedure.
Scientists have successfully identified the gene, but presently there is no way
to repair it. The recent isolation of the BRCA1 gene has prompted investiga-
tors to identify other genes that may contribute to breast cancer, ovarian cancer
and the breast-ovarian cancer syndrome. By isolating such modified genes, we
might develop a genetic test to identify altered gene allowing early detection
of breast cancer.

The main goal of our research is to characterize different classes of patients
affected by breast cancer through their proteom profiles by combining Mass
Spectrometry and Data Mining. In particular our goal is to find the following
classes starting from MS data: (i) Diseased Patients (BRCA+), (ii) Diseased
Patients (BRCA−), (iii) Healthy Patients (BRCA+) (Carriers), (iv) Healthy
Patients. In such a way, using an initial training set of known samples, a new
unknown sample could be classified with respect to such classes. After de-
scribing the workflow of the experiment we present a bioinformatic platform
for data mining analysis of mass spectrometry data. Initially, the training set
for platform tuning will exclusively be composed by publicly available SELDI-
TOF mass spectrometry data, from National Cancer Institute NCI (USA) [Pet-
ricoin et al., 2002], [Conrads et al., 2003].

2. Mass Spectrometry Analysis

Our proteomics experiment (see Fig. 1) comprises two main phases: (i)
Mass Spectrometry analysis, that receives in input a set of biological samples
(e.g. cells, tissues, serum), and produces as output a set of raw data (spec-
tra); and (ii) Data Mining analysis, which comprises three main phases: data
preprocessing, data clustering and data classification.

The Mass Spectrometry analysis [Aebersold and Mann, 2003] [Glish and
Vachet, 2003] can be decomposed in four sub-phases (see Fig. 1): (i) Sample
Preparation (e.g. Cell Culture, Tissue, Serum); (ii) Proteins Extractions; (iii)
ICAT protocol: and (iv) Mass Spectrometry processing.
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Figure 2. Peptide/Protein profile of a biological sample, Low Mw window:1000-12000 m/z

Sample Preparation. In the overall experiment we use three kind of samples:
serum, tissue, cell culture. Cell culture is the technique used for maintaining in
life, in vitro, some cells obtained by some animals or vegetable tissues, usually
because of the enzymatic breakup. The cellular lines are called HCC1937 and
are extracted both from healthy and diseased patients. In the first experiment,
a HCC1937 line in which the BRCA1 is mutated is used, and another line
in which the gene has been transfected (wild-type) and in which it works as
oncosuppressor is employed. Both are kept in cultivation to obtain 2.500.000
cells.
Proteins Extraction. Proteins, because of cellular threadbare, are extracted
by a buffer. The cellular threadbare is obtained because of Freez and Thaw
process. This procedure implies the immersion in liquid nitrogen for one
minute and the crystal formation that cracks the membranes. Centrifuging
fourteen thousand times for 53 minutes proteins are ready to be extracted from
the surnatant. The quantification is performed because the ICAT protocol pre-
views at least 100 micrograms of proteins are tied with the reagent. ICAT is
applied to every cellular line.
ICAT Protocol. The Isotope-Coded Affinity Tag-labeling procedure (ICAT)
is used in protein separation. After the denaturation with SDS, triton and tris
buffer, it needs: (i) the reduction of the disulphide bridges S-S with TCEP;
(ii) the reaction of labeling with cleavable ICAT reagents (in according to the
protocols supplied in the Cleavable ICAT Reagents Protein Labeling); (iii) the
split of the protein in different peptides (approximately 10 peptides), at lysine
and arginine, because of the trypsin. The sample containing the peptide is
eluated in order to purify the marked peptides from those not marked. This
operation is achieved with a cation-exchange cartridge.
Mass Spectrometry Processing. The sample, opportunely processed, is ana-
lyzed through Liquid Chromatography mass spectrometry (LC MS) or Matrix-
Assisted Laser Desorption / Ionisation - Time Of Flight mass spectrometry
(MALDI-TOF MS). MALDI-TOF is a relatively novel technique in which a
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co-precipitate of an UV-light absorbing matrix and a biomolecule is irradiated
by a nanosecond laser pulse. The ionized biomolecules are accelerated in an
electric field and enter the flight tube. During the flight in this tube, different
molecules are separated according to their mass to charge ratio and reach the
detector at different times. In this way each molecule yields a distinct sig-
nal. The method is used for detection and characterization of biomolecules,
such as proteins, peptides, oligosaccharides and oligonucleotides, with molec-
ular masses between 400 and 350000 Da. It is a very sensitive method, which
allows the detection of low (10-15 to 10-18 mole) quantities of sample with
an accuracy of 0.1 - 0.01%. Mass Spectrometry data is represented, at a first
stage, as a (large) sequence of value pairs, where each pair contains a measured
intensity, which depends on the quantity of the detected biomolecules, and a
mass to charge ratio (m/z), which depends on the molecular mass of detected
biomolecules. Due to the large number of (m/z) data contained in mass spectra
obtained by real samples, analysis by manual inspection is not feasible. Mass
spectra are usually represented in a graphical form as in Fig. 2.

3. Data Mining and Bioinformatics Analysis

The Data Mining analysis comprises the following sub-phases (see Fig. 3):
(i) Data preprocessing, (ii) Clustering, (iii) Classification. In particular (super-
vised) classification is useful for disease classification and its main goal is to
produce, starting from a training set of samples, a classifier able to assign new
unknown samples to one of the classes. Conversely (unsupervised) clustering,
a way to perform a descriptive modelling of data by partitioning samples into
k groups, could be useful to find novel and potentially interesting clusters. For
example, healthy patients with or without a cancer biomarker, depending on
BRCA1 mutations. We currently implemented only the classification proce-
dure, thus no clustering procudure is shown in Fig. 3.

Recently, a number of algorithms have been developed to find spectral dif-
ferences between mass spectra of samples taken from two separate conditions.
Such a discrimination is a goal for Mass Spectrometry Classification Algo-
rithms (MSCAs). Although several MSCAs have been developed [Ball et al.,
2002] [Lilien et al., 2003], these tools face only the data analysis aspect, with-
out take into account the different phases of a MS experiment, from sample
preparation to result interpretation. With this motivation we developed PRO-
TEUS, a grid-based problem solving environment for proteomics data analysis
[Cannataro et al., 2004]. It will be used to perform early disease diagnosis as
well as monitoring disease progression, regression, and recurrence of inherited
breast cancer [Cuda et al., 2003], by using different data mining and bioin-
formatics tools selected through domain ontologies (e.g. proteomic and breast
cancer domains) and combined through workflow paradigm.



Mass Spectrometry Data Analysis 25

Figure 3. Workflow of Mass Spectrometry Data Mining Analysis

The classification process allows to assign a new samples (i.e. its spectra)
to one of the classes identified in a training phase conducted by using known
samples. To validate the data analysis component of our framework, we are fo-
cusing on analyzing real mass spectrometry data made available by a research
group at the U.S. National Cancer Institute (NCI) 1. Such data, representing
mass spectra of different samples taken from healthy and diseased people, are
whole spectrum Surface-Enhanced Laser Desorption/Ionization Time of Flight
(SELDI-TOF) data produced with several techniques.
Data Preprocessing Phase. As explained in [Wagner et al., 2003] the pre-
processing phase of MS data usually involves four steps: (i) Subtract Base
Line; (ii) Identification and extraction of peaks; (iii) Normalization of Intensi-
ties; (iv) Alignment of correspondent peaks. The first step tries to identify the
base intensity level (baseline) of each mass spectrum which varies from sam-
ple to sample and consequently to subtract this. The underlying hypotheses is
that baseline is a variable noise. The second step can be performed by using
the data-processing embedded in Mass Spectrometer software or, in case of
raw data, we are designing a custom identification algorithm to fit either in-
formatics and biological consideration. The third step enables the comparison
of different samples because the absolute peak values of different fraction of
spectrum are incomparable. The last step finds a common set of peak locations
that will be used for each sample in the different classification schemes. The
Clinical Proteomics Program Databank 2 has provided three set of ovarian can-
cer data that can be used without restriction. Data can be easily modelled with
two arrays, the former contains m/z values and the latter intensity values. We
are also developing a simple XML Schema to easily wrap and manage such
data. Binning is a technique to reduce dimension of spectra.
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Figure 4. Graphical explanation of Q5

Clustering Phase. In the clustering phase the set of samples is partitioned in
clusters. This phase, not yet implemented, could be useful to find novel poten-
tially useful groups of samples [Wagner et al., 2003], or to better organize well
known samples in homogeneous clusters. For example, it would be possible
that diseased patients could be partitioned with respect to some conditions, or
healthy patients could be clustered with respect to the probability to contract a
disease. Formally cluster analysis tries to determine distinct groups in all data,
where members of each group are similar to other members but are different
from members of other groups, with respect to a particular distance.
Probabilistic Classification with Q5 Algorithm. The Q5 algorithm [Lilien
et al., 2003] is a closed-form solution to the problem of classification of com-
plete mass spectra. Q5 employs a probabilistic classification algorithm built
upon dimension-reduced linear discriminant analysis. The classifier computed
by Q5 is optimal under this error function with respect to the training set. The
Q5 method outperforms previous full-spectrum complex sample spectral clas-
sification techniques and can provide clues as to the molecular identities of
differentially expressed proteins and peptides. It uses Principal Component
Analysis (PCA) [Joliffe, 1986], a well known technique for multivariate analy-
sis. In particular PCA is used to reduce the dimensionality of a data set with
little or no information loss as reported in [Lilien et al., 2003].

From a geometrical point of view, each spectrum can be represented as a
vector in n-dimensional space. PCA takes the cloud of data points, and rotates
it such that the maximum variability is visible. Another way of saying this is
that it identifies most important gradients. The first stage in rotating the data
cloud is subtracting the mean and dividing by the standard deviation, in this
way the centroid of the whole data set is zero. Principal Component Analysis
chooses the first PCA axis as that line that goes through the centroid and min-
imizes the square of the distance of each point to that line. The second PCA
axis also goes through centroid and also goes through the maximum variation
in the data, but with a certain constraint: it must be completely uncorrelated.
Formally, given a set of variables X1, . . . , Xn, PCA produces a new set of vari-
ables Y1, . . . , Yi, . . . , Yp (p < N ) in which each of Yi is a linear combination
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of X1, . . . , Xn. PCA ensures that new variables are uncorrelated. Each new
variable is a principal component. In this way successive steps can operate on
a reduced data set. After PCA, a clustering method performs a discrimination
between reduced spectra according to a metric induced in new space obtained.

Although PCA is often used as an unsupervised clustering technique, in
Q5 it is used only for dimensionality reduction, whereas Linear Discriminant
Analysis (LDA) is used to compute discriminant between classes, taking into
account (supervised) the class membership of each sample. Given a system
with n classes in k dimensions it computes k-1 orthogonal vectors that specify
an hyperplane of k-1 dimensions. Projection of sample points (each spectrum
in our experiment) maximizes the between-class scatter (healty-disease) and
minimizes the within class scatter. Contrarily to Discriminant Factorial Analy-
sis (DFA), LDA computes the optimal discriminant in a closed form. LDA
utilizes class membership of each sample in computation.

The version of Q5 used in our experiment, that works on the whole spec-
trum, is implemented in Matlab script and is freely downloadable 3 under
GNU public license. It reads the ovarian cancer data and builds (in case of two
class classification) two couples of arrays: (Normal Healthy Intensity, Normal
Healthy Mass Charge Ratio), and (Ovarian Cancer Intensity, Ovarian Cancer
Mass-Charge Ratio), containing respectively the spectra of healthy and cancer-
ous patients. Next it performs the PCA and LDA analysis to different training
and test sets in order to produce the classification. As shown in Fig. 4, a spec-
tral dataset is first partitioned into training set and test set whose relative dimen-
sions can be tuned from user as parameter of Matlab script. These spectra are
projected onto PCA basis to create the reduced representation in PCA-SPACE.
The spectra in this space are projected onto the LDA discriminant aiming to
compute the statistical parameter of classes. Spectra are projected onto PCA
basis, then onto LDA discriminant and finally classified. Each sample is as-
signed to a class using a probability distribution function.

Notes

1. FDA-NCI Clinical Proteomics Program Databank. [http://ncifdaproteomics.com/]

2. [http://clinicalproteomics.steem.com/download-ovar.php]

3. [http://www.cs.dartmouth.edu/∼donaldlab/Software/]
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Abstract The bio-molecular diagnosis of malignancies represents a difficult learning task,
because of the high dimensionality and low cardinality of the data. Many su-
pervised learning techniques, among them support vector machines, have been
experimented, using also feature selection methods to reduce the dimensionality
of the data. In alternative to feature selection methods, we proposed to apply ran-
dom subspace ensembles, reducing the dimensionality of the data by randomly
sampling subsets of features and improving accuracy by aggregating the result-
ing base classifiers. In this paper we experiment the combination of random
subspace with feature selection methods, showing preliminary experimental re-
sults that seem to confirm the effectiveness of the proposed approach.

Keywords: Molecular diagnosis, ensemble methods, Support Vector Machine, Random Sub-
space, DNA microarray

1. Introduction

High throughput bio-technologies based on large scale hybridization tech-
niques (e.g. DNA microarray) can provide information for supporting both
diagnosis and prognosis of malignancies at bio-molecular level [Alizadeh, A.
et al., 2001]. Several supervised methods have been applied to the analysis of
cDNA microarrays and high density oligonucleotide chips (see e.g. [S. Du-
doit and Speed, 2002]). The high dimensionality and low cardinality of gene
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expression data, together with the high sensitivity required for diagnostic prob-
lems, makes the classification of malignant and normal samples very challeng-
ing from a machine learning point of view.

An effective approach to this problem is represented by feature selection
methods [Guyon et al., 2002], that can be useful both to select the genes
more related to malignancies and to enhance the discrimination power be-
tween normal and malignant tissues. Recently we proposed an alternative ap-
proach [Bertoni et al., 2004] based on random subspace ensembles [Ho, 1998],
that is sets of learning machines trained on randomly chosen subspaces of the
original input space.

In this paper we propose to integrate the two approaches in order to enhance
the accuracy and the reliability of the diagnostic system: at a first stage a subset
of genes is selected through a feature selection method, successively subsets of
genes randomly drawn from the previously selected genes are used to train an
ensemble of learning machines. The ensemble output can be obtained through
majority voting or any other aggregation technique. We call this method Ran-
dom Subspace on Selected Features (RS-SF).

The proposed combined approach is described in the next section. Some
preliminary experimental results are shown in Sect. 3, while in the last section
we report conclusions and on-going developments of the present work.

2. Feature selection methods and random subspace
ensembles for gene expression data analysis

The major problem in gene expression analysis is the high dimensionality
and low cardinality of the data, from which the curse of dimensionality prob-
lem arises.

An approach to this problem consists in reducing the dimensionality through
feature (gene) selection methods [Golub et al., 1999; Guyon et al., 2002].
Many methods can be applied, ranging from filter methods, wrapper methods,
information theory based techniques and "embedded" methods (see e.g. [Guyon
and Elisseeff, 2003] for a recent review).

On the other hand we recently experimented a different approach [Bertoni
et al., 2004] based on random subspace ensemble methods [Ho, 1998]. For a
fixed k, k-subsets of features are selected. according to the uniform distrib-
ution. Then the data of the original training set are projected to the selected
n-dimensional subspaces and the resulting data sets are used to train an ensem-
ble of learning machines [Ho, 1998].
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RS-SF Algorithm
Input:

- A data set D = {(xj , tj)|1 ≤ j ≤ m}, xj ∈ X ⊂ R
d, tj ∈ C =

{1, . . . , k}
- a learning algorithm L
- a feature selection algorithm F
- a number of selected features n < d
- a dimension k < n of the random subspace
- number of the base learners I

Output:
- Final hypothesis hran : X → C computed by the ensemble.

begin
D̂ = F(D, n)
for i = 1 to I
begin

Di = Subspace projection(D̂, k)
hi = L(Di)

end
hran(x) = arg maxt∈C card({i|hi(x) = t})

end.

Figure 1. Random Subspace on Selected Features (RS-SF) ensemble method.

In this work we experiment a combination of the two approaches. The
role of the gene selection stage consists in eliminating noisy or uninformative
genes. Then we can apply random subspace ensembles only with the remain-
ing more discriminant and informative genes, enhancing the accuracy of the
resulting base learners though aggregation techniques, while diversity between
base learners is maintained by the random choice of the input subspaces.

Fig. 1 summarizes the proposed method. F denotes a feature selection
algorithm, that selects the n most significant features from the original d-
dimensional input space. Subspace projection is a randomized pro-
cedure that selects, according to the uniform distribution, a k-subset A =
{α1, . . . , αk} from {1, 2, . . . , n}, so defining a projection PA : R

n → R
k,

where PA(x1, . . . , xn) = (xα1 , . . . , xαk
); then it returns as output the

new k-dimensional data set {(PA(xj), tj)|1 ≤ j ≤ m}, where D̂ =
{(xj), tj)|1 ≤ j ≤ m} is the set of the n-dimensional features selected from
the original d-dimensional input space. Every new data set Di obtained through
the iteration of the procedure Subspace projection is given as input to
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a learning algorithm L which outputs a classifier hi. Note that, with abuse of
notation, with hi(x) we ambiguously denote the extension of hi to the entire
R

d space. All the obtained classifiers are finally aggregated through majority
voting.

3. Experiments with the colon adenocarcinoma gene
expression data

To evaluate the feasibility of the RS-SF ensemble method for the analysis of
gene expression data, we considered the colon adenocarcinoma bio-molecular
diagnosis problem. The colon data set is composed of 62 samples: 40 colon
tumor and 22 normal colon tissue samples, with 2000 gene expression data for
each sample [Alon, U. et al., 1999].

Main goal of the experiment is the performance comparison of SVMs trained
with subsets of genes chosen through a simple but effective feature selection
method (Golub’s method) [Golub et al., 1999] and RS-SF ensembles.

3.1 Experimental setup

Regarding preprocessing of data, we used the same techniques illustrated
in [Alon, U. et al., 1999]. Groups of genes have been selected ranking the
gene’s scores obtained through the Golub’s statistics. The selection of the
genes has been performed using only training data in order to avoid the se-
lection bias [Ambroise and McLachlan, 2002].

Table 1. Summary of the best results achieved with single SVMs trained on subsets of genes
selected through Golub’s method (Single FS-SVM), RS-SF ensembles of SVMs, standard ran-
dom subspace ensembles (RS ensemble), single SVMs without feature selection, and the average
error of the base SVMs that compose the ensemble.

Test Err. St.dev Train Err. St.dev Sens. Spec.

RS-SF ensemble 0.0968 0.0697 0.0727 0.0183 0.9250 0.8636
RS ensemble 0.1290 0.0950 0.0000 0.0000 0.9000 0.8182
Single FS-SVM 0.1129 0.0950 0.0768 0.0231 0.9250 0.8182
Single SVM 0.1774 0.1087 0.0000 0.0000 0.8500 0.7727
Single base SVM 0.1776 0.1019 0.0000 0.0000 —— ——

We considered different random subspaces of dimensionality from 2 to 2n−1,
randomly drawn from each 2n-dimensional gene space selected from the input
space through the Golub’s method, while varying n between 5 and 10. Accord-
ing to Skurichina e Duin [Skurichina and Duin, 2002] we applied linear SVMs
as base learners. Indeed they showed that random subspace ensembles are ef-
fective with linear base learners characterized by a decreasing learning curve
(error) with respect to the cardinality n, especially when the dimensionality
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is much larger than the cardinality. For each ensemble we trained 200 linear
SVMs, considering values of the regularization parameter C between 0.01 and
1000.

We computed for both single SVMs and RS-SF ensembles the test error
and training error, sensibility, specificity and precision through 5-fold cross
validation techniques. Regarding software, we developed new C++ classes
and applications for random subspace ensembles extending the NEURObjects
library [Valentini and Masulli, 2002]. For all the experiments, we used the
C.I.L.E.A. Avogadro cluster of Xeon double processor workstations [Arlan-
dini, 2004].

3.2 Results

The results show that the best RS-SF ensemble outperforms single SVMs
trained with a subset of selected genes (Single FS-SVM). In fact we obtained re-
spectively a 0.0968 test error in the first case, and 0.1129 for FS-SVM (Tab. 1).
The test error of RS-SF ensemble is consistently equal or lower than single FS-
SVM, independently of the number of the selected genes, as shown in Fig. 2.
In particular the minimum of the test error with 128 selected genes is obtained
with 64-dimensional random subspace, while with 512 selected genes with 16-
dimensional subspaces. In both considered methods, the sensitivity has the
same value from 32 to 128 selected genes, then it decreases for single FS-
SVM, while becomes constant for RS-SF ensembles (Fig. 3). Also the speci-
ficity is better for random subspace ensemble combined with feature selection:
a maximum is achieved with 128 selected genes, and for number of selected
genes larger than 64 RS-SF ensembles show better results than single FS-SVM
(Fig. 3).

The difference between the best RS-SF ensemble and single FS-SVM is not
statistically significant, according to the 5-fold cross validated t-test [Diet-
terich, 1998] (Tab. 1). On the contrary it becomes significant with standard
random subspace ensemble and single SVMs trained without feature selection.
Anyway, considering the accuracy in RS-SF ensemble and single FS-SVM with
respect to the number of the selected genes, the difference is significant at 0.05
level in most cases (Fig. 2).

4. Conclusions and developments

The results show the applicability of the combined approach of the random
subspace ensemble with feature selection methods, to the analysis of gene ex-
pression data. Anyway we need to perform more experiments with other data
sets, to confirm, as may be expected, the presented results. The proposed ap-
proach doesn’t require a specific feature selection method. Regarding this item,
we plan to experiment with other feature selection algorithms.
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Figure 2. Comparison of the test error with respect to the number of the selected features
between RS-SF ensembles of SVMs and FS-SVMs.
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Abstract In this paper we describe and compare two different methods to reduce the cardi-
nality of the set of candidates nodules, characterized by an high sensitivity ratio,
and extracted from PA chest radiographs by a fully automatized method. The
methods are a rule based system and a feed-forward neural network trained by
back-propagation. Both the systems allow to recognize almost the 75% of false
positives without losing any true positives.

Keywords: CAD Systems, Neural Networks, Support Vector Machines

Introduction

In the field of medical diagnosis the chest radiography is by far the most
common type of procedure for the initial detection and diagnosis of lung can-
cer, due to its noninvasivity characteristics, radiation dose and economic con-
siderations. Several studies in the last two decades (see [Austin et al., 1992]
and [Forrest and Friedman, 1982]) calculated an average miss rate of 30% for
the radiographic detection of early lung nodules by humans. In a large lung
cancer screening program 90% of peripheral lung cancers have been found to
be visible in radiographs produced earlier than the date of the cancer discovery
by the radiologist. This explains why in the last two decades a great deal of
research work has been devoted to the development of Computer Aided Di-
agnostic (CAD) systems aimed to lung nodules detection, and a wide variety
of them have been already proposed and reviewed in [van Ginneken et al.,
2001]. Most of the methods presented in the literature are based on a two stage
processing scheme. At first, the image is processed in order to increase the
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visibility(conspicuity) of the nodules; the regions that may contain nodules are
then extracted by means of rule based schemes which exploit the main nod-
ule characteristics, such as the gray level and the circular shape. The second
step aims to the selection of the real nodules within the set of the extracted
candidates; this is generally done by means of classification methods, which
first reduce the number of candidates, usually quite high, and then extract the
final ones. The main issue regarding this step is the choice of a proper set of
features to describe and represent the data so that the samples belonging to the
two classes may easily distinguished. Moreover the main problem of the pre-
sented schemes is the high number of false positives; such problem has been
faced with two different strategies: either to reduce the number of candidates
extracted by the first two steps ([Wu et al., 1994], [Xu et al., 1998], [Yoshida
et al., 1995]), or to leave to proper classifiers the task of reduction ([Penedo
et al., 1998], [Lin et al., 1996], [Lo et al., 1993], [A. Schilham and Loog,
2003]); in both cases however many true positives are discarded, leaving the
problem open.
We developed a fully automatized method using multiscale approaches to seg-
ment the lungs (see [Columbano, 2004]) and then enhance the visibility of
the nodules in the area detected (see [Campadelli and Casiraghi, 2004]). The
multiscale analysis of the image is a fundamental key for both the task of seg-
mentation and nodule detection; in the first case it allows to capture the details
of the lung borders which belong to different scales, and in the second case it
is used to handle all the possible sizes of the nodules.
This multiscale approach is an additional element with respect to the method
presented in the literature and it has proven to be necessary and effective. First
of all, it allows to increase the visibility of also the most subtle nodules, fa-
cilitating the extraction task which indeed loses very few true positives and
creates a set with an high sensitivity ratio. Second, it is employed to extract
a set of features which is different from the ones commonly presented in the
literature since it captures the properties of the candidates at various scales; in
this paper we present our experiments using these features as input to trim the
set of candidates initially extracted; to this aim we experimented two different
methods and compared their performances: they are a rule based system and
a feed-forward neural network trained by back-propagation. Both the systems
had similar results.

1. Materials and methods

The method has been tested on a standard database acquired by the Japanese
Society of Radiological Technology. It contains 247 radiographs: 154 contain-
ing lung nodules and 93 of patients with no disease. The images were digitized
with a 0.175 mm pixel size, a matrix size of 2048×2048, and 4096 gray levels.
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The diameter of the nodules ranges from 5 to 35 mm. All the nodules in the
images have been classified according to the difficulties encountered in their
detection by the radiologists. They have been divided in 5 classes ranging from
obvious to extremely subtle. The algorithm for the candidate extraction works
on images down-sampled to an experimentally set dimension of 256 × 256
pixels to reduce its computational cost without worsening the performances.
The features used as input for nodule classification are instead calculated on
the images with 512× 512 pixels to have a more detailed representation.

2. Extraction and pruning of the nodule candidate set

The method starts with the segmentation of the images to extract the lung
fields (see [Columbano, 2004]) and the enhancement of the conspicuity of the
nodules as described in [Campadelli and Casiraghi, 2004]. In [Paola Cam-
padelli and Columbano, 2004] we describe a multiscale method analyzing the
enhanced images to extract a unique set of candidate regions; it also allows
to create an image Ir for different nodule radiuses, r = 2, .., 12. The value
Ir(x, y), associated to each pixel (x, y), is a measure which represents the
pixel as a potential center of a nodule of radius r. The combination of the 11
images Ir is a gray level image G(x, y), obtained by assigning to each pixel in
each candidate region the value

G(x, y) = max
r∈[2,12]

(Ir(x, y)) (1)

and then scaling it in the range [0, 255]. All the details of the method are de-
scribed in [Campadelli and Casiraghi, 2004].
With this extraction scheme we get a set of about 32000 regions on the 247
images of the database, with an average of about 130 regions per image and
only 5 true positives lost out of 154. The comparison of these results with those
presented in the literature and described in [A. Schilham and Loog, 2003] and
[Keserci and Hiroyuki, 2002] showed the better performance of our method
(see [Campadelli and Casiraghi, 2004]).

To reduce the number of the extracted candidates we searched for a set of
rules which could describe the main characteristics of the real nodules, hence
allowing us to discard some false positives. To this end we calculated for
each region a set of 40 features and studied their distribution. The statistical
analysis allowed us to select a set of 12 most representative features, whose
combination by means of simple rules, has proved to be effective for a first
candidates selection. The created rule based scheme is indeed able to detect
and discard more than half false positives. In the following we will describe
just the selected features. They are based on the shape and position of the
region , the gray level distribution in the original radiograph down-sampled to
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the dimension of 512 × 512 pixels, the values of the gray levels in the image
G(x, y), and the set of coefficients Ir(x, y) associated to each pixel for each
radius value.
Six features are based on the shape; they are:

circularity, as defined in [Giger et al., 1988];

effective radius, that is the radius of the circle with an area equivalent to
the one of the region;

the ratio between the perimeter of the region and the perimeter of the
circle with radius of 12 pixels (we are considering r = 12 as maximum
radius value);

the ratio between the area of the region and the area of the circle with
radius of 12 pixels;

the ratio between the two dimensions of the minimum bounding box
including the region;

the ratio between the two dimensions of the maximum bounding box
including the region;

One feature is based on the gray level distribution of the pixels in the original
radiograph down-sampled to the dimension of 512 × 512 pixels: it is simply
the mean of the gray levels of the pixels in each region.
Two features are calculated on the gray level of the pixels in the image G(x, y):
they are the mean and the maximum value of the gray level of the pixels.
The position feature has been introduced to eliminate false positives detected
on the rib cage boundaries, which are characterized by the fact that they are
attached to the lung borders and have an elongated shape. It is calculated con-
sidering the external contour of the region and it is the fraction of the number
of pixels of the contour which lay outside the lung area with respect to the total
number of the pixels in the contour itself.
Two features are calculated as an estimate of the most characteristic radius
value to be associated to a generic region X . We use two different methods
to get it and hence obtain two values that can be compared. One method first
calculates for each pixel (x, y) a most eligible radius rad(x, y). This is done
by considering all the Ir(x, y) obtained for that pixel and then calculating:

rad(x, y) = Argmaxr∈[2,12](Ir(x, y)) (2)

The first radius, R1
X , associated to X is then R1

X = max(x,y)∈X rad(x, y).
The second method calculates the radius R2

X by considering for each different
value of r the sum

SumX(r) =
∑

(x,y)∈X

Ir(x, y) (3)
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Again R2
X is calculated according to:

R2
X = Argmaxr∈[2,12](SumX(r)) (4)

We note that R1
X and R2

X are very similar in case of true positive elements
and significantly different for many false positives; based on this fact we are
allowed to recognize some regions as false positives.
The remaining feature is the maximum value of the various SumX(r), hence
the one associated with R2

X .

This set of features is the input of a rule based system composed by 12
simple rules: 8 of them basically describe the relationships observed between
pairs of features, meanwhile 4 are based on simple tresholding. The system can
easily discard 19500 false positives without loosing any true positives, hence
reaching a sensitivity ratio equal to 0.97 and a total number of candidates that
is about 12000, approximately 50 candidates per image.
Our results can be compared with the ones of the method described in [A. Schil-
ham and Loog, 2003] in which the authors apply a classifier that selects 5028
candidates from the first set composed by 33000 regions, but loosing other 15
true positives in addition to the 20 already lost, for a total of 36 false negatives.
Our pruning method is able to discard less false positives but does not loose
any nodules. Although the rules chosen are very intuitive and simple they need
some thresholds to be experimentally set; therefore they may depend on the
images in the database.

3. Employing Neural Network Classifiers for candidates
selection

In this section we describe experiments aimed to the use of a feed-forward
neural network trained by standard back-propagation to trim the first set of
extracted candidates. The advantage of this system with respect to the rule
based one is that, once the network is trained, it does not need any threshold to
be set. Moreover we expect that learning algorithms working with the global
set of features as input, could have better performances since they could learn
more complicated relationships than the simple ones of our rule based system.
In the following we describe our experiments aimed to this purpose.
The input of the network is represented by a vector X = [x1, ...., x12, x13, x14]
where x1, .., x12 represent the features previously described, and x13, x14 are
the spatial coordinates of the center of mass of the nodule; they are expressed
in a local coordinate system which has its origin in the center of mass of the
lung fields and it is scaled with respect to the width and length of the lung
area. We apply to the input vector a preprocessing aimed to data normalization,



42

followed by a scaling that brings all the values to the range [0.0, 1.0].
One observation to be done is that the two classes to be recognized, "nodules"
and "NOT nodules", are highly unbalanced (the "nodules" are 149, the "NOT
nodules" are about 32000). Our choice was then to train the neural network in
order to recognize and discard the regions whose set of features is totally dif-
ferent from the one of the nodules. To this end we classified the data obtained
as "possible nodules" and "NOT nodules". This classification was realized con-
sidering as "NOT nodules" the ones discarded by the rule based system and as
possible nodules all the others, hence obtaining two classes with about 20000
and 12000 elements. We made experiments using both a training and a val-
idation set. They were formed by randomly choosing from both the classes,
the 50% of the elements for the training, and the 10% for the validation. The
remaining elements (40% of the total) were used for testing. We used a neural
network with 1 hidden layer composed of 8 neurons and an output layer with 2
neurons, and made several experiments changing the parameters of the learn-
ing algorithm (the momentum and the learning rate) the maximum number of
epochs for the training, the minimum error allowed on the training set, and es-
pecially the elements in the input set. During these experiments an input data
was classified as belonging to a class when the corresponding output neuron
had a value bigger than 0.7. The obtained results are comparable with those of
the rule based system: the network does not loose any true positives and in the
worst case the number of false positives detected is never less than the 99% of
the number recognized by the rule based system.
The final number of candidates obtained by both systems described above is
still quite high, and needs a further reduction in order to be useful for clinical
purposes. To perform this reduction we experimented neural networks whose
input is the sub-image of the candidate itself created by extracting from the
original radiograph an area of dimension 400 by 400 centered on the centroid
of the candidate region considered. Several experiments have been done using
as input down-sampled versions of the sub-images created. We tried with im-
ages down-sampled to 40x40, 20x20, 10x10, 8x8 and trained architectures of
different complexities. The best results obtained on the test set composed of
11000 false positives samples and 30 true positives allowed to maintain only
1300 false positives but caused the loss of 10 true positives. Since this results
are not acceptable we are now looking for other features and different or more
complex classifiers, such as Support Vector Machines.
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Abstract We develop and test a new hierarchical approach for the prediction of protein
structure. An algorithm is described to assemble the 3D fold of a protein starting
from its secondary structure and β-sheet topology. Reconstruction is carried
out by energy minimization of a reduced protein model, where β-partners are
derived from appropriate distance constraints imposed by the knowledge of β-
sheet motifs. Additional constraints are imposed in the (φ, ψ) torsion space from
secondary structure knowledge. Experiments show how the proposed procedure
proves to be a reliable and fast predictive approach for a large fraction of proteins
of interest. Arrangements of β-sheets are predicted with special recursive neural
networks architectures. We first present a unifying framework for description of
a large class of contextual recursive models and then show how it is possible to
solve the problem at some extent of success.

Keywords: Protein structure prediction, β-sheets prediction, recursive neural networks, pro-
tein structure reconstruction.

1. Introduction

Knowledge of the spatial conformation of a protein can help the study of its
function. Unfortunately, the number of resolved structures is still limited by
the low throughput of available experimental methods. Prediction tools have
the potential to bridge the sequence-structure gap, but no reliable and general
methods have yet been proposed. Attempts to simplify the problem have been
made by trying to predict the contact map of a protein instead of its atomic po-
sitions. It has been demonstrated how good protein models can be derived even
with noisy contact maps [Vendruscolo et al., 1997]. Unfortunately, prediction
of contact maps is still very unreliable and it is not clear whether the type of
errors made by the predictor can be corrected by the reconstruction method.
In the attempt to train more efficient predictors, a low-detail representation of
protein conformation could extract high level relevant information. Prediction
of coarse-grained contact maps, i.e. contacts are defined among secondary
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structure segments, has been recently tried [Vullo and Frasconi, 2003], but yet
there exists no clear result concerning feasibility of reconstruction using only
coarse information.

In this work, we elaborate on efficient and reliable prediction methodologies
tailored for a specific class of chains, those that are are mainly characterised by
residues in strand conformation. The quality of reconstruction for this kind of
proteins can be enhanced by the knowledge of secondary structure and indica-
tion of which strands are partners. We focus on contacts defined on β-partners,
as the geometry and connectivity of β-strands imposes strong constraints on
the overall structure of the protein. In section 2 we propose an efficient pro-
cedure to find a structure that matches the aforementioned characteristics of a
given protein in its native conformation. In order to fully automate structure
prediction, in section 3 we also describe an approach for predicting β-sheet
motifs using a powerful class of connectionist models. Finally, in section 4 we
describe our experiments and show encouraging results in both directions.

2. Backbone Reconstruction Algorithm

The reconstruction procedure performs energy minimization of a reduced
protein model, where knowledge about secondary structure and β-partners in
the native conformation is enforced as a set of constraints on candidate solu-
tions. The protein model comprises all backbone heavy atoms plus a single
atom for the Cβ to represent side chain occupation. Free parameters of this
model are the dihedral φ and ψ angles. The ω angle is set fixed to 180◦, while
coordinates of the Cβ atom and all bond lengths and angles are set to their
average values calculated on the PDB dataset.

Constraints on Protein Structure

Secondary structure information is enforced by constraining the values of
the dihedral angles: α-helices (H) and β-strands (E) correspond to two com-
pact regions in the φ − ψ plot. For every residue in the H and E classes,
the distance between its coordinates in the (φ, ψ) space and the center of the
corresponding region is forced to be lower than a specified threshold:

‖ (φ, ψ)− (φs, ψs) ‖≤ ts (1)

where s ∈ {H, E}. For each pair of β-strands we know if they are partners
and in this case if they are parallel or anti-parallel. The geometry of two β-
partners constrains the distance between hydrogen-bonded residues. Unfortu-
nately, two partner strands can be of different dimensions and we do not want
to specify the partnership in terms of connectivity between residues. Let I and
J be the sequences of indexes of the residues in two β-strands and Ik and Jk

two subsequences of size k. An alignment with parallel orientation is the set
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{(Ik
1 , Jk

1 ), . . . , (Ik
k , Jk

k )}, while an alignment with anti-parallel orientation is
the set {(Ik

1 , Jk
k ), (Ik

1 , Jk
k−1), . . . , (I

k
k , Jk

1 )}. The procedure must test all pos-
sible alignments for each pair of strands. For partner strands, given a particular
alignment, the distance between every pair of (supposedly) bonded atoms must
be in a strict range of values

∀i∈1,k : db
min ≤‖ x̄(Ik

i )− x̄(Jk
i ) ‖≤ db

max (2)

and the alignment that violates less constraints contributes to the solution: this
enforces the existence of at least one good alignment between partners. For
non-partner strands both orientations are tested; given a particular alignment,
the distances between paired atoms must be greater than a specified value

∀i∈1,k : ‖ x̄(Ik
i )− x̄(Jk

i ) ‖> dnb
min. (3)

and the alignment that violates more constraints contributes to the solution;
no good alignments must exist between non-partners. Atomic forces impose
a lower bound on the distance between two atoms, thus defining an excluded
volume for each atom that prevents the protein to collapse in a single point. We
introduced these constraints in our procedure by forcing the distances between
all pairs of atoms to be higher than a specified threshold:

∀i∈1,k : ‖ x̄(Ik
i )− x̄(Jk

i ) ‖> dnb
min (4)

Optimization

In order to simplify the optimization task, all the constraints are expressed
as quadratic penalty terms:

dmin ≤ d ≤ dmax →

⎧⎨⎩
(d− dmin)2 d < dmin

(d− dmax)2 d > dmax

0 otherwise
(5)

Unfortunately, this gives rise to a highly non linear function of the model free
parameters. Global optimisation of non-linear cost functions is generally a dif-
ficult task, but we adopt here a simple approach consisting in a quasi-newton
local optimization procedures (LBFGS [Liu and Nocedal, 1989]) coupled with
a multistart strategies. Our non-linear cost function has in general many local
minima. To mitigate this problem, we implement a specific protocol during
optimization: firstly, we optimise the cost function with only secondary struc-
ture constraints, so that β-strands are formed in the backbone; secondly, we
add the constraints for β-partners, relaxing the constraints on secondary struc-
ture so that a matching conformation is more easily found; finally, we add the
constraints on atomic volumes, that could form barriers and prevent parts of
the backbone to reach their final positions.
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3. Prediction of β-sheet Motifs

As shown in the previous section, our reconstruction procedure needs a
bunch of important ingredients: secondary structure, hence the location of β-
strands, and the arrangement of β-sheets in the protein must be known. All
these information are obtainable either from the PDB files, when the structure
is known, or from predictions. Clearly, the former case is of limited interest
and it is considered here to analyze upper bound performance of reconstruc-
tion. We assume here that secondary structure is known, for instance using one
of several successful methods developed for this problem [Jones, 1999; Baldi
et al., 1999], and focus on the more difficult task of prediction of β-sheet con-
figurations.

The β-sheets motifs inference problem is modelled as a multi-class classifi-
cation task. Assume we are given a set S = {s1, s2, . . . , sn} of strands, each
pair of strands (si, sj) defined on S can be mapped to one of three possible
labels: say 0 (no hydrogen bonds between si and sj), -1 (si and sj are an-
tiparallel) and 1 (parallel strands). The connectivity matrix on S represents the
β-sheets motif and is defined as a matrix C whose elements cij ∈ {0,−1, 1}
correspond to the pairs (si, sj). Here we model connectivity matrices as two-
dimensional (square) undirected lattices, where nodes correspond to pairs of
β-strands and edges connect adjacent pairs. Modelling β-sheets motifs in this
way naturally gives rise to complex structured (graphical) representations than
simple fixed size attribute-value pairs. The main advantage of using struc-
tured data is the possibility to encode intrinsic dependencies among atomic
entities allowing powerful learning algorithms to be employed. The approach
adopted here for predicting the connectivity matrix resemble those of [Pollastri
and Baldi, 2002; G.Pollastri et al., 2003], where contextual Recursive Neural
Networks (RNNs) are used to predict contact maps defined at the amino acid
or segment level. In the following, we propose a unifying view of contextual
RNNs and derive the predictive architecture used for the present case.

RNNs for undirected graphs

A data structure is a graph whose nodes are marked by sets of domain vari-
ables, called labels. A skeleton class, denoted by the symbol #, is a set
of unlabeled graphs that satisfy some topological conditions. Let I and O
denote two label spaces: I# (resp. O#) refers to the space of data struc-
tures with vertex labels in I (resp. O) and topology #. Recursive models
such as RNNs [Frasconi et al., 1998] can be employed to compute functions
T : I# → O# which map a structure into another structure of the same form
but possibly different labels. In the classical framework, # is contained in the
class of bounded DPAGs, i.e DAGs where each vertex has bounded outdegree
and whose children are ordered. Recursive models put a causality assumption
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Figure 1. (left): Contextual RNNs, dependencies among input, state and output variables.
(center and right): processing of undirected sequences and grids with contextual RNNs (only a
subset of connections are shown).

on data processing: structures are processed bottom-up according to a reverse
topological order of the nodes. Therefore, the state variables associated to these
nodes and then their outputs depend only on the sub-structures induced by their
children. The above assumption imposes some restrictions on the amount of
contextual information that can be tackled and extensions of these models for
dealing with more general undirected structures have been proposed [Baldi
et al., 1999; Pollastri and Baldi, 2002; Vullo and Frasconi, 2003].

A more general assumption is considered here: # is contained in the class of
bounded-degree undirected graphs. In this case, there is no concept of causality
and the computational scheme described in [Frasconi et al., 1998] cannot be
directly applied. The strategy consists in splitting graphical processing into a
set of causal “dynamics”, each one computed over a plausible orientation of
U . More formally, assume U = (V, E) ∈ I# has one connected component.
We identify a set of spanning DAGs G1, . . . , Gm with Gi = (V, Ei) such that:

the undirected version of Gi is U

∀ v, u ∈ V v 	= u ∃ i : (v, u) ∈ E�
i is E�

i the transitive closure of Ei

and for each Gi, introduce a state variable Xi computed in the usual way. Fig.1
(left) shows a compact description of the set of dependencies among the input,
state and output variables. Connections run from vertices of the input struc-
ture (layer I) to vertices of the spanning DAGs and from these nodes to nodes
of the output structure (layer O). Using weight-sharing, the overall model
can be summarized by m + 1 distinct neural networks implementing the out-
put function O(v) = g(X1(v), . . . , Xm(v), I(v)) and m state transition func-
tions Xi(v) = fi(Xi(ch1[v]), . . . , Xi(chk[v]), I(v)). Learning can proceed by
gradient-descent (back-propagation) due to the acyclic nature of the underlying
graph. Within this framework, we can easily describe all contextual RNNs ar-
chitecture developed so far. Fig.1 (center) shows that an undirected sequence is
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spanned by two sequences oriented in opposite directions. We then obtain bi-
directional recurrent neural networks [Baldi et al., 1999], or bi-recursive neural
networks [Vullo and Frasconi, 2003] if we consider generic undirected graphs.
Our is the case of two-dimensional grids, which can be seen as spanned by
four directed grids oriented from each cardinal corner (Fig.1, right). The cor-
responding model is called 2D DAG-RNNs [Pollastri and Baldi, 2002].

4. Experimental Protocol

The experiments were performed using a representative set of non homol-
ogous chains from the Protein Data Bank (PDBSelect, december 2002). For
every chain we determined the secondary structure class using the same proce-
dure employed for the CATH database [Orengo et al., 1997]. The final dataset
contained only mainly-β proteins, for a total of 154 chains whose sequence
length is between 30 and 300 residues.

Reconstruction from true and predicted β-sheet motifs

We first tested whether our reconstruction procedure is able to reproduce
β-sheet motifs of real protein structures. Accuracy was measured as the pro-
portion of pairs of β-strands correctly assigned as partners or non-partners.
The average value obtained was 98.5%, with 74% of test proteins with all
β-partners correctly assigned. We then tested whether knowledge of β-sheet
motifs is sufficient to reconstruct protein native conformations with good qual-
ity. We used two measures of quality: the RMSD calculated on the Cα atoms
for all the amino-acids in strands, and the GDT TS measure adopted in the
CASP contest [Zemla et al., 2001]. We obtained an average RMSD value of
7.55 Å, and an average GDT TS of 29.7. The distribution of those measures
in the whole data-set is shown in Fig. 2 (left). We then performed the same
test on the β-sheet motifs as predicted from the recursive model (see sec.2). In
this case, the average number of correctly assigned β-strands pairs dropped to
75%, since the predictor is likely to produce unrealistic structures. The average
value of the RMSD became 16 Å, while the average value of GDT TS was 24.

Prediction of β-sheet motifs

Together with contextual RNNs for grids, we trained and tested multi-layered
feed-forward neural networks (FF-NNs) to predict the class of contact for the
(i, j) pair of β-strands. In either cases, input was represented by merging
an attribute-value representation for the i-th and j-th strand in the sequence.
Segments were described by 23-dimensional feature vectors including the av-
erage multiple sequence alignment profile, the relative index of one strand and
its normalized start and end amino acid positions. In these experiments, we
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Figure 2. Histograms showing the distribution of RMSD (left) and GDT TS (right) on the set
of reconstructed structures using native and predicted β-sheets topologies.

applied a 5-fold cross validation procedure. In order to control overfitting we
applied early-stopping, using for each fold part of the available training data
as validation set. After cross validating the two methods, we obtained the re-
sults indicated in Table 1. We report several indices together with their 95%
confidence intervals: micro-averaged global classification accuracy (Q3) and
accuracy of prediction of anti-parallel (Qap), parallel (Qp) and unpaired strands
(Qnb). The index Q3 indicates consistently higher performance than a baseline
approach: predicting the class randomly, but with the frequencies observed in
the training sets would lead to an expected 72.6% accuracy. It clearly results
that contextual RNNs predict anti-parallel and parallel strands consistently bet-
ter than simple non-recursive nets. The latter model tends to predict the more
numerous class in the majority of cases and then it shows better global results
(Q3). A trivial predictor always assigning a pair of strands to the more nu-
merous class (non-contact) would achieve 84.0% but with no use. Finally, the
values of Qap and Qp give a measure of the difficulty of the problem, the major
obstacle being the unbalance among the classes: anti-parallel and parallel pairs
represent 13.99% (resp. 1.96%) of the total set of pairs.

Method Q3 Qap Qnb Qp

C-RNNs 80.5±.9 39.1±3.0 89.1±.8 7.1±4.2
FF-NNs 85.1±.8 24.2±2.6 97.2±.4 0.0±.0

Table 1. Experimental comparison of contextual RNNs and feed-forward neural nets for the
problem of predicting β-strands pairings.

5. Concluding Remarks

Experimental results demonstrates how the proposed approach is able to
build protein models matching the available characteristics of a native confor-
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mation. The proposed algorithm is inherently fast – reconstruction takes on av-
erage 20 minutes on standard workstations – because it is based on an efficient
local optimization procedure combined with a multi-start strategy. By this, dif-
ferently from other de-novo methods, we were able to test our approach over
a large non-redundant set and statistically significant quality measures were
obtained. Moreover, reconstruction of β-sheets topology does not require fine-
grained information about contacts between single residues. Therefore, our
algorithm can be used even if there are incomplete information about the na-
tive structure, e.g. during NMR modelling. Unfortunately, the reconstructed
structures are quite distant from corresponding native conformations, but we
believe the quality of reconstruction could be improved by the addition of dif-
ferent types of contacts between secondary structure elements.

We also explored the case in which nothing is known about strands topol-
ogy. We built a predictor of partnership between β-strands using recursive
neural networks. Reconstruction was then tested using the predicted topology
instead of the real one. Unfortunately, the algorithm did not prove to be suf-
ficiently reliable to correct the errors of the predictor, which in turn can be
substantially improved with the use of richer input descriptions. This led to a
substantial decrease in the quality of reconstruction compared to the previous
case. However, we have no knowledge of similar experiments being conducted
before, so this can be considered as a first step toward a complete reconstruc-
tion procedure based on coarse-grained information alone.
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Abstract The Human Leukocyte Antigen (HLA) region is a part of genome which spans
over 4 Mbases of DNA. The HLA system is strongly connected to immunolog-
ical response and its compatibility between tissues is critical in transplantation.
We have developed an application of oligonucleotide microarrays to HLA typ-
ing. In this paper we present a method based on a fuzzy system which interac-
tively supports the user in analyzing the hybridization results, speeding-up the
decision process moving from raw array data obtained from the scanner to their
interpretation (genotyping). The two-level procedure starts with evaluation of
spot activity, then it estimates probe hybridization levels from activity levels.
The method is designed for being readily usable by the biologist, by adopting
fuzzy linguistic variables which are familiar to the user and by featuring a stan-
dard and complete graphical interface.

Keywords: HLA typing, oligonucleotide microarrays, probe hybridization labelling, fuzzy
modeling, fuzzy systems.

Introduction

The HLA system [Klein and Sato, 2000] consists of three regions in the
human genome that are strongly connected to immunological response. In
transplantation, the match between donor’s and receiver’s HLA is critical for
histocompatibility (compatibility between tissues).The number of HLA alleles
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reported in the last decade has risen at a rapid rate. More than 1700 HLA allelic
variants have been described to date, and are available from the IMGT/HLA
Sequence Database at http://www.ebi.ac.uk/imgt/hla/. Therefore, characterization
and identification (typing) of HLA is crucial for transplantation, as well as for
antigen presentation, autoimmune disease and many others areas of clinical
interest [Klein and Sato, 2000].

Among the molecular methodologies, DNA microarray technology can pro-
vide a feasible and reliable approach for HLA typing. Oligonucleotide mi-
croarrays [Ekins and Chu,1999] make it possible to perform a large quantity
(even thousands) of simultaneous experiments. Each experiment corresponds
to a given oligonucleotide probe, a DNA strand of 20-30 bases which selec-
tively combines with a complementary sequence in the target RNA sample
(this process is termed hybridization). The probes are affixed to specific po-
sitions (spots) on the surface of a glass substrate, organized as an array. The
target is fluorescently labelled, therefore a fluorescence measurement by laser
scanning gives information about the amount of RNA hybridized at each spot,
or specific location on the chip.

The use of microarray technology in HLA typing is promising [Pera et al.,
1997; Guo, 1999] but to date not yet widespread. However, the high through-
put provided by this method allows the collection and analysis of thousand of
single nucleotide polymorphism in parallel [Ekins and Chu,1999; Guo, 1999].
This spot classification task on the basis of the microarray images is complex
and can be very time consuming.

In this paper we present a system that interactively supports the user in ana-
lyzing the hybridization results, speeding-up the decision process moving from
raw array data obtained from the scanner to their interpretation, i.e., geno-
typing. After a description of our approach to HLA typing with microarray
(Sect. 1), we will describe in Sect. 2 the system supporting the measurement
of probe hybridization we have developed. In Sect. 3 we discuss a case study
for validation of the proposed approach. Discussion and Conclusions are in
Sect. 4.

1. HLA typing with microarrays

Our oligonucleotide array approach for HLA typing involves a fluorescently
labelled locus specific amplification of genomic DNA followed by hybridiza-
tion with a panel of probes selected to detect a specific pattern of sequence
motifs corresponding to an HLA allele.

The procedure starts with the design of a set of oligonucleotides, of about
15-20 bases, able to discriminate the alleles in high resolution. Each oligonu-
cleotide probe will only anneal to sequences that match it perfectly, a single
mismatch being sufficient to prevent hybridization under appropriate conditions
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Figure 1. Scanned image of a microarray for HLA typing. The probes are affixed in the
central area of the array. One can distinguish spots with positive (lighter ones), intermediate, or
negative (darker ones) activities and outliers (noise) spread mostly in the border areas.

[Wallace et al., 1979]. In such as way, to each gene allele to be discriminated
we associate a code made up by a list of positive or negative expected hy-
bridization of the ordered set of probes.

Then, oligonucleotide probes are synthesized and spotted on the microarray
(chip) using a spot printing robot, and then the microarray is hybridized using
the target DNA to be analyzed. After hybridization and stringent washing the
slide is scanned using a slide laser scanning system obtaining in such a way
the fluorescence image of the microarray.

In Fig. 1 there are the images of two microarrays produced by a Packard-
Bell Bioscience Division ScanArray 4000X. In the former image probes are af-
fixed in the central area of the array and their pattern is repeated twice. We can
distinguish spots with positive (lighter ones), intermediate, or negative (darker
ones) activities and outliers (noise) spread mostly in the border areas. The lat-
ter image shows an enlarged detail of another microarray image, with higher
presence of outliers.

HLA typing is then obtained by comparing the pattern of hybridization of
the ordered set of probes and the codes associated to gene alleles in the probe
design step.
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The evaluation of probe hybridization is a complex task due to the presence
of spots with intermediate activity that must be ascribed either to the choice
of probes with too different melting temperatures 1 in the probe design step,
or to other experimental problems like, e.g., the (partial) probe curling due
to the presence of auto-complementary sequences or to the bad anchorage of
the probe to the glass. As a consequence, the binary linguistic variable Probe
Hybridization (with {Positive, Negative} term set), must be obtained from the
the linguistic variable Spot Activation that can range in a term set containing
Positive value, Negative value and one or more Intermediate values (the last
ones usually corresponding to so-called False Negative/False Positive spots).

Using the available knowledge about the specific probe and the experimen-
tal conditions, Intermediate values of Spot Activity can be mapped into Posi-
tive/Negative values of the Probe Hybridization. Moreover, one can exploit the
redundancies of the microarray (e.g., the repetitions of spots of the same probe,
such as in the case in Fig. 1(a)) in order to obtain a more reliable estimation of
Probe Hybridization.

2. Proposed approach

A typical HLA typing problem can need hundred of probes to be affixed to
the microarray that will contain at least a double number of spots. Because
of the large throughput typical of microarrays, evaluating probe hybridization
by the approach described in Sect. 1 will be very time consuming and com-
plex, computer-assisted analysis is of value in order to provide large-scale al-
lele typing, improve data management, and streamline overall quality control
processes.

A direct approach to computer-assisted labelling of Probe Hybridization can
consist in the definition of a bank of (fuzzy) rules evaluating the probe hy-
bridization on the basis of the image features obtained from the spots. But this
approach is not easy, as an expert biologist can discriminate the hybridization
level of a probe on the basis of the image produced by the scanner and of the
nature of the probe itself, while s/he cannot obtain a reliable classification of
spots using only spots’ features. As a consequence, a machine learning ap-
proach trying to correlate spots’ features (inputs) and the Probe Hybridization
classification made by the biologist (labels) can be more fruitful in supporting
the user’s labelling task.

The approach we followed to design a system for the support to probe hy-
bridization labelling is based on two sequential interactive steps:

1 A Spot Labelling Step modeling the Spot Activity of a probe by evalu-
ating the memberships of spots to terms (fuzzy sets) Positive, Negative
and (one or more) Intermediate. Moreover, an additional term Outlier is
considered grouping spots contaminated by noise. To this aim we use a
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learning machine that takes as input patterns the values of the spot’s sub-
image features and as labels the expert biologist’s classification based on
visual inspection of the spot sub-image.

2 A Probe Labelling Step supporting the biologist in the association of
Spot Activity values to those of Probe Hybridization. Positive and Neg-
ative values of Spot Activity are univocally associated to the same terms
of Probe Hybridization, while Intermediate values of Spot Activity are
associated by the biologist to either Positive or Negative values of the
Probe Hybridization on the basis of the available knowledge on the spe-
cific probe and on the experimental conditions and exploiting the spot
redundancy.

We have developed the system on a 500 MHz Pentium PC in Sun Java 2,
providing it with an interactive graphical user interface making use of pure
Sun Java Swing graphical components such as tables, trees, menus and image
panels (see Fig. 2). In this way, the user has access to a familiar look-and-feel
which helps keeping the user training curve smooth.

For each spot we considered its position onto the microarray and the fol-
lowing features computed on the spot’s sub-image: average intensity, average
background intensity, intensity standard deviation, diameter, circularity, and
uniformity. All those data are a sub-set of those produced by the ScanArray
Express software equipping the ScanArray 4000X.

The learning machine used in the Spot Labelling step is a network of Fuzzy
Basis Functions (FBF) [Mendel, 1995; Wang, 1994; Wang and Mendel, 1992]
that is a Mamdani fuzzy logic system [Lee, 1990] with singleton fuzzifica-
tion, max-product composition, product inference and height defuzzification,
equivalent to the ANFIS model [Jang, 1993]. A FBF network can learn its
parameters from a labelled data set using a gradient descent procedure. A Java
implementation is available at http://mlsc.disi.unige.it/HLA/FBF/.

For each class to be modeled we use a FBF network whose task is the dis-
crimination of that class against the remaining others on the basis of the con-
sidered spot sub-images features. We use the mean square error (MSE) as a
cost function to be minimized by the gradient descent procedure. In this way
the FBF network estimates the posterior class conditional probability of any
spot [Casalino et al., 1998; Masulli, 1994], that we can consider as the fuzzy
membership to the class. We performed model selection on the FBF networks
using a K-fold validation method [Amari, 1997; Stone, 1974] that is particu-
larly suitable when only a small data set is available, as in the present case.

Fig. 2 shows an example of interaction in the Spot Labelling Step. The user
starts by selecting a small set of spots for each Spot Activity class: Positive,
Medium, Negative, and Outlier. In few seconds the FBF networks generalize
the classification to all spots in the image. Labels are assigned to spots by
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Figure 2. The interactive user interface. Each row of the table corresponds to a spot and
contains the values of its features, and other information, including the class of membership (
Positive, Medium, Negative, Outlier, and Reject). On the bottom the squares overimposed to
the scanned image represent the positions of spots, and the color of their contours indicate the
associated class. The experiment is described in Sect. 3.

using a Winner Take All (WTA) rule that associates the spot to the highest
membership class. If the user accepts the classification, the step terminates.
Otherwise, the user can either explicitly change the membership class of some
spots and terminate the step, or prepare a new sample and retrain. Moreover,
every time the user can mark a spot as Reject. Rejected spots will not be
considered in the Spot Labelling and Probe Labelling Steps.
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Note that many outlier points in the microarray image are implicitly filtered
out as they are outside the spots’ sub-images. Concerning the outliers be-
longing to spots’ areas, the hosting spot areas are grouped in the class Outlier
during the previously described interactive learning procedure and, moreover,
we add to this class also the spots with low membership to the other classes.
The spots assigned to class Outlier will not be considered in the subsequent
Probe Labelling Step.

As already stated, the Probe Labelling Step supports the biologist in map-
ping the Spot Activity values already evaluated into the two values of the Probe
Hybridization. To this aim the biologist exploits the spot redundancy using a
choice of operators including maximum, minimum, averaging, and voting, in
order to fuse the Spot Activity values corresponding to all instances of a given
probe, and then he will exploit his knowledge about the probes and the experi-
mental conditions in order to map Intermediate values of Spot Activity to either
Positive or Negative values of the Probe Hybridization.

After the Probe Labelling Step, we obtain the typing of the target HLA allele
by comparing the ordered list of Probe Hybridization levels obtained with the
list of alleles’ codes produced during probe design.

3. Case study

In this section we describe an experimental validation of our procedure for
HLA typing with microarrays and of our system assisting probe hybridization
labelling. We used a small number of probes organized in two identical squares
of 5×5 spots.

A panel of 20-mer oligonucleotide probes was designed for identifying poly-
morphic positions located in exon 2 and exon 3 of HLA-A and B loci and in
exon 2 of HLA-DRB1 locus. Each probe contained a 5’ aminolink for immobi-
lization chemistry and a 12-mer spacer, followed by the 20-mer hybridization
sequence. The polymorphic sequence was situated near the center of each hy-
bridization sequence.

Oligonucleotide probes were synthesized and spotted on an array by MWG
Biotech Srl. The microarray was hybridized with single strand PCR product
amplified from human genomic DNA.

The target DNA was previously HLA typed as A*0216/0301 HLA with an
independent approach (high-resolution sequencing with a capillary sequencer,
for different HLA loci) and was prepared as follows: double stranded PCR
product first generated using locus specific primers and then purified to remove
the excess primers. Single stranded DNA molecules were then generated from
asymmetric PCR using one 5’ Cy5-labelled primer as described in [Wallace et
al., 1979].
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After hybridization and stringent washing the slide was scanned using a
ScanArray 4000XL and the fluorescence image was analysed using the inter-
active system described in the previous section. We expected to get positive
hybridization with six probes (ACES2, ACES3, ALMR5, ALMD2, ALM016,
and ALM017) and negative with the others. The analysis with the support of
the interactive system (see Fig. 2 for a screen-shot of this analysis) leads to the
expected results with few user interactions 2.

4. Discussion and conclusions

We have described a system for assisting the biologist in the analysis of
oligonucleotide microarray images for HLA typing [Klein and Sato, 2000].
Because of the large number of probes used in HLA typing computer-assisted
analysis is of value in order to provide high-throughput allele typing, improve
data management, streamline overall quality control processes. The approach
we followed is based on a fuzzy modeling of spot activity and the mapping
of spot activity evaluations into the evaluation of the hybridization of related
probes.In Sect. 4 we have shown an experimental verification of the system.

On the basis of the promising results obtained with the method described
in this paper, we have started the development of a decision-support system
for the full processing of HLA typing using the oligonucleotide microarrays
technology. Note that the proposed computer-assisted approach increases in
relevance while the complexity of the typing task increases and hundred or
thousand of spots have to be labelled.
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Notes

1. The melting temperature of a probe is the optimal temperature for its hybridization and depends on
its basis. The quantity of RNA hybridized can increase/decrease if the hybridization experiment has been
done at a temperature higher/lower that the probe’s melting temperature.

2. On the the web site http:/mlsc.disi.unige.it/HLA/DSS/ there is a detailed description of the inter-
action with the system.
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Abstract In this paper we describe the use of a correlation clustering algorithm [Chai-
tanya, 2004] to group expression level of genes in a microarray dataset. The
clustering problem is formalized as a semi-defined optimization program, based
on the correlation provided by two quantities, respectively related to an agree-
ment and a disagreement between a pair of genes. We also intend to validate
the role of the correlation clustering algorithm by comparing the results with a
support vectors clustering approach [Ben-Hur et al., 2001] that is demonstrated
to perform well for many applications.

Keywords: Clustering, support vector, consensus, microarray

Introduction

In the last decade the microarray technology [Speed, 2003; Eisen and Brown,
1999] has become a fundamental tool for an increasing number of researchers.
The reason for this is the fact that this tool offers biologist the capability to
simultaneously analyse the expression level of thousands of genes.

The analysis of such experiments is non trivial because of the large quan-
tity of data and the many degrees of variation introduced at the different stages
of each experiment. Common approaches, from the machine learning field,
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attempt to predict functionally significant groups of genes both in an unsuper-
vised and supervised manner. The former approach generally, start with the
definition of some measure of distance among patterns: clusters are then ob-
tained with different algorithms as hierarchical clustering [Eisen et al., 1998],
[Spellman et al., 1998] or self-organizing map [Tamayo et al., 1999]. In con-
trast, supervised methods begin with a collection of known classes of genes that
are expected to be co-regulated and hence exhibit similar expression profiles:
in this case, the analysis is performed on a sample of data in the typical form
{(x1, y1), (x2, y2), ..., (xn, yn)} where yi is the label that the system aims to
learn and xi are the patterns.

Recently, the clustering problem has been modelled as combinatorial op-
timization problem on graphs [Bansal et al., 2002]. These combinatorial ap-
proaches are NP-Hard [Bansal et al., 2002], but efficient polynomial time ap-
proximation schemes have been proposed [Chaitanya, 2004; Charikar et al.,
2003]. Each of them uses the Williamson and Goemans technique [Goemans
and Williamson, 1995] of rounding a relaxed version of the problem. We fol-
low this approach (section 2) to define the problem as a semi-defined optimiza-
tion program. Here, we analyse 50 patterns of the budding yeast Saccaromyce
Cerevisiae measured at 17 time step of the cell division cycle. Since we wish to
validate our application using a method that is demonstrated to perform well in
different contexts, we use an algorithm based on a kernel function as a bench-
mark [Vapnik, 1998]. In [Schölkopf et al., 2001], [Tax and Duin, 1999] and
again in [Ben-Hur et al., 2001] it was suggested how to use such an approach
in an unsupervised fashion. This framework briefly reported on in a more de-
tail (in section 2), is also useful for our objective of getting two consensus
quantities that will form the basis of a measure of performance for both the al-
gorithms. Finally (section 4) we discuss some numerical results and conclude
this paper.

1. Support Vectors Clustering

We can represent a microarray as an n ×m matrix X where each of its m
column vectors (x1,x2, ...,xm) has n observations of a gene, realized at dif-
ferent stages of an experiment i.e. in our case, at different time steps of the
cell-cycle. Similarly to support vectors machine approach, the use of support
vectors to cluster these m patterns is obtained by applying a non linear trans-
formation Φ : Γ → Π from a general input space Γ to some higher dimensional
inner product feature space Π. In this space one looks for the smallest sphere
of radius R. Hence, given the data matrix X and stated for each xi the con-
straint ‖Φ(xi) − a‖2 ≤ R2 + ξ where a is the centre of the sphere, ‖.‖ is the
Euclidean norm and ξi ≥ 0 are slack variables to allow for outliers [Schölkopf
et al., 1999], the problem is solved by introducing the Lagrangian
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L = R2 −
∑

j

(R2 + ξj − ‖Φ(xi)− a‖2)βj −
∑

ξjμj + C
∑

ξj (1)

in which βj ≥ 0 and μj ≥ 0 are Lagrangian multipliers, C is a constant and
C
∑

ξj is a penality term. Setting the derivative of L to zero, with respect to
R, ξj and a, results to∑

j

βj = 1 a =
∑

j

βjΦ(xj) βj = C − μj (2)

The KKT conditions [Fletcher, 1987] are ξjμj = 0 and (R2 + ξj − ‖φ(xj) −
a‖2)βj = 0. From the above expressions one can eliminate in (1) the variables
R, a and μj , turning the lagrangian into the dual form

W =
∑

j

βjK(xj,xj)−
∑
i,j

βiβjK(xi,xj) (3)

The solution is finally obtained by optimizing this final expression. We follow
this approach by using the Gaussian kernel K(xi,xj) = e−q‖xi−xj‖2

with the
width parameter q. Note that thanks to Eqs. (2) one can handle three different
sets of vectors, respectively:

Bounded Support Vectors (BSV) which lie outside the boundaries. These
points have ξi > 0 and βi > 0. They therefore have, from KKT condi-
tions, μi = 0 and βi = C. One can also note that, when C > 1 no BSVs
exist due to the constraint (2).

Support Vectors (SV) which lie on cluster boundaries. A point xi with
ξi = 0 is mapped to the inside or to the surface of the features space
sphere. If its 0 < βi < C then, from KKT conditions, the image Φ(xi)
lies on the surface of the feature space sphere.

The set of all other points that lie inside the boundary.

Cluster assignment

The definition of the kernel and Eqs. (2) allow us to write the distance R2(x)
of each point’s image in the feature space as

R2(x) = K(x,x)− 2
∑

j

βjK(xj,x) +
∑
i,j

βiβjK(xi,xj) (4)
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Since the radius of the sphere is R = R(xi), where xi is a support vector, the
contour that enclose points in data space is the set {xi|R(xi) = R}. The func-
tion Φ(x) is unknown, we therefore cannot seek points belonging to different
cluster by its inverse. One can, however, apply the following geometrical ap-
proach: given a pair of inputs belonging to different clusters, any path that
connects them (for instance, a segment) must exit from the sphere in the fea-
ture space. Such a path contains a point y with R(y) > R. Therefore, one
can define an m × m matrix A whose component ai,j , for 1 ≤ i ≤ m and
1 ≤ j ≤ m, is defined as follows

ai,j =
{

1 if, for all y on the line segment connecting xi and xj, R(y) ≤ R
0 otherwise

Clusters are then obtained from the connected components of A.

2. Correlation Clustering Problem

The Correlation Clustering Problem was been introduced in [Bansal et al.,
2002]. An instance of the problem can be represented as a graph G = (V, E),
where each edge is labelled either as ”+” (this means that the vertices of the
edge are similar) or ”-” (the vertices of the edge are different). The intention
is to cluster the nodes of the graph so that the ”+” edges lie within the clusters
and the ”-” edges lie between clusters. More precisely, we want to maximize
agreements: the number of ”+” edges within clusters and ”-” edges between
them. This combinatorial optimization problem has been proven to be NP-
Hard [Bansal et al., 2002]. Instead of dealing with qualitative edges (”+”, ”-”)
we want to deal with quantitative instances in which each edge e has two posi-
tive weights: win (e) ≥ 0 and wout (e) ≥ 0. The weights win (e) and wout (e)
represent the gain of agreement if the vertices of edge e are respectively clus-
tered together or not. Let ei ∈ Rn be the vector with 1 in the ith coordinate
and 0 elsewhere and let xi ∈ Rn be a variable vector in the n dimensional
Euclidean space, the correlation clustering problem can now be stated more
formally as follows:

max
xi∈{e1,...,en}

∑
e=(i,j)

(win (e)xi · xj + wout (e) (1− xi · xj)) (5)

Assigning xu to the vector ev, means that the vertex u has been put in cluster
v so that the above sum equals the weight of agreement for a given cluster-
ing. The above formulation is an integer quadratic combinatorial optimization
problem and, as previously stated, it has been proved to be NP-Hard [Bansal
et al., 2002]. Because of the hardness, attention has shifted to approximation
schemes.
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Approximation Algorithm

For the correlation clustering problem, one of the approximation algorithm
that achieves the best performance is based on the Williamson and Goemans
approximation scheme [Goemans and Williamson, 1995]. This scheme con-
sists of solving a continuos relaxation instance of the original problem in poly-
nomial time. Then a solutin for the original problem is found by means of a
probabilistic rounding procedure. For the correlation clustering problem the
continuous relaxation is the following:

max
xi∈Rn

∑
e=(i,j)

(win (e)xi · xj + wout (e) (1− xi · xj))

xv · xv = 1 ∀v
xu · xu ≥ 0 ∀u, v, u 	= v

(6)

This is a semi-definite quadratic programming problem and can be efficiently
solved in polynomial time using an interior point algorithm [Alizadeh and al.,
2000]. To obtain an integer solution the following stochastic procedure is used
[Chaitanya, 2004]: two hyperplanes passing through the origin are choosing
independently and uniformly at random. These hyperplanes partition the Rn

space into four regions. These regions are interpreted as clusters. Each of the
xi vector is assigned to a cluster, depending on the region it belongs to. The
probability pin (θ) that two vertices lie in the same cluster depends only on the
angle between them: xi · xj = cosθ. It can clearly be seen that pin (θ) =(
1− θ

π

)2
. The following lemma has been proven in [Chaitanya, 2004]:

Lemma 2.1 For any θ ∈ [0, π
2 ], pin (θ) ≥ 0.75cosθ and

pout (θ) ≥ 0.75 (1− cosθ).

The following theorem gives the expected performance guarantee to the round-
ing procedure described above. It is easely proved by means of lemma 2.1.

Theorem 2.2 The above rounding procedure delivers a solution of expected
value of at least 0.75OPT .

3. Numerical Results

In this preliminary work, our intent is mainly that of comparing the machine
learing and correlation clustering approaches. For this reason, even though the
time complexity of both approaches is polynomial, the number of genes in-
volved is limited to 50. For the same reason, since the correlation clustering
algorithm does not explicitly take into account the outliers, we decided to avoid
outliers also in the support vector clustering approach (C = 1). This choice
clearly prevents to fully exploit the Support Vector abilities of clustering in a
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noisy environment as suggested in [Ben-Hur et al., 2001]. Our analysis is con-
ducted on 50 patterns of the budding yeast Saccaromyce Cerevisiae taken at
17 different stages of the cell division cycle. In agreement with [Chen et al.,
1999], we filtered out both patterns whose expression levels were below a de-
tection threshold (≤ 200) and patterns expressed but without significant vari-
ation over time, for instance, maximum and average expression level satisfy
(MAX − AVG)/AVG ≤ 0.1. In order to reduce the dimension of a pattern,
we computed the principal components on the above 50 extracted points by
transforming each of them into a two dimensional space given by the first two
principal components. In our experiments these two components account for
about 96% of the total variance.
In our experiments the value of parameter C, as defined above, is always set to
1. We computed the support vectors with a value of q = 10−7, allowing us to
obtain 4 clusters as shown in Figure 1. In this preliminary comparison work,
this choice is motivated in order to maintain the same number of clusters in
both approaches. Nontheless the limit of 4 clusters is not mandatory and it can
be avoided in future work: in [Chaitanya, 2004] the author has shown a 0.7666
approximation algorithm for an arbitrary number of clusters. This algorithm
uses a rounding scheme on the solution of a relaxated instance, similar to the
4 cluster case adopted here. Moreover the limit on the number of clusters is
quite unnatural for the support vector approach: in [Ben-Hur et al., 2001], the
authors suggest to apply an iterative approach starting from small q values and
then increasing the q parameter to obtain more clusters.

Agreement, Disagreement Measure

In order to define an instance of the problem for the correlation cluster-
ing approximation algorithm, we must provide a pair of weights win(e) and
wout(e) for each pair of nodes relative to an edge e. We propose, now, a mea-
sure of agreement between nodes on the basis of the support vectors machine
metric. In section 1, we decided whether or not to include each pair of nodes
in the same cluster on the basis of the mapping in feature space sphere: if the
path in feature space is entirely inside the sphere, we included the nodes in the
same cluster. For a pair of nodes for which the linear path between them is
mapped outside the sphere, we have choosen to assign a wout weight equals
to 1. A win weight equals to 1, can be assign for a pair of nodes whose linear
path is mapped, in feature space, entirely inside the sphere. For each pair of
genes, the agreement and disagreement matrices in this way were passed to
correlation clustering algorithm and the resulted clusters is shown in Figure 2.
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Figure 1. Support Vector Machines Clustering.
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Figure 2. Correlation Clustering.
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4. Conclusions

It is evident, from Figures 1 and 2, that the clusters produced by the support
vectors do not overlap, while those produced by the correlation clustering al-
gorithm do. It is interesting to note that if we evaluate the objective function
(5) by using the clusters produced by the support vectors, we obtain a value
of 875 which is better than the one achieved by the correlation clustering ap-
proximation i.e. 768. We interpret this result on the following base: for the
correlation clustering, we have used a stochastic algorithm. The solution re-
turned by this algorithm is only expected to be greater than 0.75 with respect
to the optimum. In particular, in our numerical simulation, the stochastic pro-
cedure used to round the continuous solution consisted in choosing the best
pair of hyperplanes against 100000 of random hyperplanes passing through
the origin (see section 2). In the correlation clustering problem we have to
specify the weights of the instance, resulting in a more general problem with
more degrees of freedom. Its formulation is more explicative than choosing the
minimum enclosing sphere in the feature space. In spite of this, the correlation
clustering approximation algorithm is less efficient in finding its solution than
the support vectors clustering approach.
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Abstract Several gene selection methods have been proposed to identify sets of genes re-
lated to a particular disease or to a particular functional status of the tissue. An
open problem with gene selection methods consists in evaluating their perfor-
mance; since we usually know only a smell subset of the genes involved in the
onset of a status, and many times no relevant genes are known “a priori”. We
propose an artificial system, based on modeling gene expression signatures, to
generate synthetic gene expression data for validating gene selection methods.
Comparison between gene selection methods using data generated through the
artificial model are performed and preliminary results are reported.

Keywords: DNA-microarray, Gene selection.

1. Introduction

DNA experiments provide parallel measurements of the gene expression of
the level of the entire genome of an organism [Lockhart and Winzeler, 2000].

The dataset obtained through several microarray experiments can be repre-
sented by a table with m rows and n columns: each of its rows is associated
with an examined tissue and each column corresponds to one of the considered
genes. To specify a particular state for each tissue, a final column must be
added to the table. Typically m ∼ 100, while n ∼ 10000.

When analyzing this table to retrieve a model for diagnosis, we have two
different targets: besides finding a method that recognizes the state pertaining
to a specific tissue (discrimination) [S. Dudoit and Speed, 2002] , we wish to
determine the genes involved in this prediction (gene selection) [Guyon and
Elisseeff, 2003] . The quality of the discrimination task can be simply esti-
mated through a measure of accuracy, obtained by proper methods (hold-out,
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Figure 1. An example of a gene regulating network.

cross validation, etc.). On the contrary, it is very difficult to evaluate the results
of the gene selection process, since the genes really involved in the onset of a
state are actually unknown.

A possible way of validating gene selection could be to analyze the per-
formance of the considered method on a diagnosis problem where significant
genes are known. Unfortunately, at the present no problem of this kind is avail-
able. An alternative approach consists in building an artificial model, starting
from proper biological motivations, that generates data having the same statis-
tical characteristics of gene expression levels produced by microarray experi-
ments.

A model of this kind not only allows the quality of gene selection methods
to be evaluated but it even gives general information about the structure of the
classification problem involving microarray analysis.

To this aim it is necessary to build the artificial model starting from biolog-
ical motivations and to have a statistical rule that measures similarity between
artificial and real data.

2. Biological motivations and Measures of similarity

As proposed by Repsilber [Repsilber and Kim, 2003] , the behavior of a
biological system can be described through regulatory networks that represent
the interaction between different genes (Fig.1).

The nodes and the edges of these networks are ruled by dynamic equations
that involve the concentration of products encoded by genes and consequently
the gene expression levels. Each concentration is expressed through a real
variable that changes with time and can determine the transition of the system
from a state to another.
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When the organism is in a particular state some concentrations are lower
than a given threshold (specific for each gene), while others exceed a proper
value. Thus, if we select a definite state, we can say that a gene is in the
active state, if its expression level has a value consistent (lower or greater than
a specific threshold) with that state. With this definition each gene can be
described by a binary variable, assuming value 1 if the gene is active and 0
otherwise.

Also the presence of the considered state can be expressed through a Boolean
variable, which takes the value 1, if the tissue is in that state, and 0 otherwise.
Consequently, the whole biological system can be described by a Boolean
function f with n inputs. Each of the m available microarray experiments cor-
responds to a particular entry of the truth table for the function f ; it is formed
by an input-output pair (x, y), where x is a vector of n binary values associated
with the examined genes and y is a binary value asserting if the corresponding
tissue is in the considered state or not.

According to this setting, a technique to generate artificial data for vali-
dating gene selection methods consists in building a proper Boolean function
f , whose truth table entries share the same statistical characteristics of gene
expression levels produced by microarray experiments. Then, the quality of
the gene selection method is measured by the percentage of significant genes
retrieved. Although each Boolean function can be described by a logical ex-
pression containing only AND, OR and NOT operations, in our case it is more
convenient to obtain f in a different way. In fact, it can be observed that in
biological systems genes can be assembled into groups of expression signa-
tures, i.e. subsets of coordinately expressed genes related to specific biological
functions [Alizadeh and al., 2000] . These groups of genes are, in some sense,
equivalent with respect to the state determination. Thus, the Boolean function
f can be viewed as a combination of several groups of genes. Each group is
considered active if a sufficiently large number of its genes is active. Then,
the function f assumes value 1 if the number of active groups exceeds a given
threshold.

A proper algorithm for constructing Boolean functions with these charac-
teristics has been implemented. It is able to generate data resembling those
produced by several microarray experiments for diagnostic purpose. In these
cases two or more different states are analyzed and the algorithm constructs a
specific Boolean function (adopting the above approach) for each state. Then,
to allow the application of the gene selection method, a set of input-output
pairs is produced for each Boolean function built.
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The algorithm includes several parameters that can be tuned to achieve a
good agreement between the resulting collection of input-output pairs and the
dataset produced by microarray experiments for a specific problem.

The similarity between a model and a specific real case can be analyze using
a statistical technique. In particular standard tests could be used, but, since
few data are available, strong constraints (often not verified in practice) on the
behavior of the distribution have to be imposed (e.g. normality). Alternatively,
one can think of using one or more discrimination methods for validating the
model in a statistical way. For example, a comparison between the collection
of input-output pairs produced by the artificial model and the dataset produced
by microarray experiments can be performed by looking at the accuracy values
scored by a discriminant method for different numbers of considered genes.

3. Preliminary results

In this contribution, Leukemia and Colon datasets described in [Golub and
al., 1999; Guyon and al., 2002] have been considered and two proper artifi-
cial models have been generated by constructing a specific Boolean function
for each class of the two datasets examined. Figures 2 and 3 show the ac-
curacy values obtained through the leave-one-out approach by applying Re-
cursive Feature Elimination (SVM-RFE) method described in [Guyon and al.,
2002] and the technique proposed by Golub [Golub and al., 1999] to leukemia
and artificial leukemia datasets. As one can note, the agreement between the
success rate curves is excellent in both situations.

In analogous way Figures 4 and 5 show the results obtained by applying
the same methods to colon and artificial colon datasets: even if there is less
agreement between the success rate curves, trend is quite similar especially
with Golub’s method (Fig.5).

In artificial leukemia dataset genes involved in the onset of AML and ALL
are 71. If we denote with R the vector composed by the first 71 genes, ordered
in decreasing relevance value, obtained by using the SVM-RFE method and
with G the analogous vector obtained with Golub method, we can note that the
percentage of relevant genes in R and in G is 25% and 61%, respectively.

In artificial colon dataset relevant genes, involved in the groups constituting
the two functions, are 58 in total. SVM-RFE identified 29% of the genes cor-
related with the discrimination between tumoural and normal samples, while
Golub’s method recognized 45%.
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Figure 2. Accuracy values obtained using a SVM-RFE through the leave-one-out approach
for the Leukemia dataset and for the dataset produced by the proposed artificial model, when
varying the number of considered genes.
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Figure 3. Accuracy values obtained using Golub’s method through the leave-one-out ap-
proach for the Leukemia dataset and for the dataset produced by the proposed artificial model,
when varying the number of considered genes.

4. Conclusions

We proposed an artificial model for validating gene selection methods. Pre-
liminary experimental results, using two different gene selection methods and
two dataset seem to confirm the feasibility of the model. Nevertheless we plan
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Figure 4. Accuracy values obtained using SVM-RFE through the leave-one-out approach for
the Colon dataset and for the dataset produced by the proposed artificial model, when varying
the number of considered genes.
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Figure 5. Accuracy values obtained using Golub’s method through the leave-one-out ap-
proach for the Colon dataset and for the dataset produced by the proposed artificial model,
when varying the number of considered genes.

to put more datasets to test in order to get more inputs into the effectiveness of
our approach.
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Abstract Gene-expression microarrays make it possible to simultaneously measure the
rate at which a cell or tissue is expressing each of its thousands of genes. One
can use these comprehensive snapshots of biological activity to infer regulatory
pathways in cells, identify novel targets for drug design, and improve diagnosis,
prognosis, and treatment planning for those suffering from disease. However,
the amount of data this new technology produces is more than one can manually
analyze. Hence, the need for automated analysis of microarray data offers an op-
portunity for machine learning to have a significant impact on biology and medi-
cine. Probabilistic Principal Surfaces defines a unified theoretical framework for
nonlinear latent variable models embracing the Generative Topographic Map-
ping as a special case. This article describes the use of PPS for the analysis of
yeast gene expression levels from microarray chips showing its effectiveness for
high-D data visualization and clustering.

Keywords: Probabilistic Principal Surfaces, Visualization, Clustering, Data Mining, Yeast
Genes

1. Introduction

Data mining techniques, by this time, have spread abroad across several
scientific research fields, all sharing a common peculiarity: the availability of
enormous amount of data. Despite the presence of these massive data sets, the
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key for the success of whatever applied scientific research, is to properly ex-
ploit this information to derive new knowledge leading to new discovers and
progress enhancement. Data mining is now a research field which brings to-
gether several scientists of different backgrounds (i.e. statisticians, computer
scientists and expert of the domains) who continuously add their contribute for
developing new tools aiding the humans for the interpretation and the exploita-
tion of scientific information. Genetics and medicine are examples of scien-
tific fields which are living a revolutionary era thanks to the technological and
methodological progress. As an example one can think of gene-expression mi-
croarrays, whose development started in the second half of the 1990’s, which
are having a powerful impact on molecular biology. In fact, although the abil-
ity to measure transcription of a single gene is not new, the ability to measure
at once the transcription of all genes in an organism is new and the amount
of data that biologists need to examine is overwhelming. The advent of mi-
croarray technologies for large-scale transcriptional profiling is leading to new
methods of diagnosis and treatment for any number of diseases. However, it is
become increasingly clear that simply generating the data is not enough; one
must be able to extract from it meaningful information about the system being
studied.

1.1 Gene-expression microarray and machine learning
techniques

Statistical techniques and other classical methods of data analysis alone, are
not sufficiently adequate to cope with this sudden increase in the data volume
and especially in the data complexity. Therefore, in the last decade numerous
works have been focused on the development of machine learning methodolo-
gies suited for the analysis of genetic data. Just to mention a few, support vector
machines have been used for functional classification of genes [Brown et al.,
2000], clustering techniques are used for grouping similar expression patterns
across a number of experiments of all the genes of the yeast Saccharomyces
cerevisiae [Spellman et al., 1998], and Neural networks have been employed
both for clustering and visualization of gene microarray data [Tamayo et al.,
1999; Toronen et al., 1999]. In this paper we discuss a unified nonlinear la-
tent variable model which embraces Generative Topographic Mapping [Bishop
et al., 1998] as a special case, i.e, Probabilistic Principal Surfaces [Chang and
Ghosh, 2001; Staiano, 2003], as an effective high-D data visualization and
clustering tool for mining yeast gene microarray data.
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2. From GTM to PPS: a unified latent variable model

2.1 Generative Topographic Mapping

The GTM defines a non-linear, parametric mapping y(x;W) from a Q-
dimensional latent space (x ∈ R

Q) to a D-dimensional data space (t ∈ R
D),

where normally Q < D. The mapping y(x;W) (defined continuous and
differentiable) maps every point in the latent space to a point into the data
space (see Fig. 1). Since the latent space is Q-dimensional, these points will
be confined to a Q-dimensional manifold non-linearly embedded into the D-
dimensional data space. GTM builds a constrained mixture of Gaussians (all
of them share the same variance and priors are all fixed to 1

M )

p(t|W, β) =
1
M

M∑
m=1

p(t|xm,W, β), (1)

and each component has the form:

p(t|x,W, β) =
(

β

2π

)D
2

exp

{
−β

2

D∑
d=1

(td − yd(x,W))2
}

, (2)

where t is a point in the data space and β−1 denotes the noise variance.

t1

t2t3

y(x;w)

x1

x2

Figure 1. Each node xm is mapped into a corresponding point y(xm;w) in data space, and
forms the center of a corresponding Gaussian distribution

The parameters W and β of the mixture are computed by means of the
Expectation-Maximization algorithm used for optimizing the model log-
likelihood function with respect to W and β themselves. The form of the
mapping y(x;w) is defined as a generalized linear regression model

y(x;w) = Wφ(x) (3)

where the elements of φ(x) consist of L fixed basis functions {φl(x)}L
l=1, and

W is a D × L matrix.
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Figure 2. Under a spherical Gaussian model of the GTM, points 1 and 2 have equal influences
on the center node y(x) (a) PPS have an oriented covariance matrix so point 1 is probabilisti-
cally closer to the center node y(x) than point 2 (b)

2.2 Probabilistic Principal Surfaces

The PPS generalizes the GTM model by building a unified model and shares
the same formulation as the GTM, except for an oriented covariance structure
for the Gaussian mixture in R

D. This means that data points projecting near a
principal surface node (i.e., a Gaussian center of the mixture) have higher in-
fluences on that node than points projecting far away from it. This is illustrated
in Fig. 2.

Therefore, each node y(x;w), x ∈ {xm}M
m=1, has covariance

Σ(x) =
α

β

Q∑
q=1

eq(x)eT
q (x) +

(D − αQ)
β(D −Q)

D∑
d=Q+1

ed(x)eT
d (x), (4)

0 < α <
D

Q

where

{eq(x)}Q
q=1 is the set of orthonormal vectors tangential to the manifold

at y(x;w),

{ed(x)}D
d=Q+1 is the set of orthonormal vectors orthogonal to the mani-

fold in y(x;w).

The complete set of orthonormal vectors {ed(x)}D
d=1 spans R

D. The parameter
α is a clamping factor and determines the orientation of the covariance matrix.
The unified PPS model reduces to GTM for α = 1 and to the manifold-aligned
GTM for α > 1

Σ(x) =

⎧⎨⎩
0 < α < 1 ⊥ to the manifold

α = 1 ID or spherical
1 < α < D/Q ‖ to the manifold.
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Figure 3. (a) The spherical manifold in R
3 latent space. (b) The spherical manifold in R

3

data space. (c) Projection of data points t onto the latent spherical manifold

The EM algorithm can be used to estimate the PPS parameters W and β, while
the clamping factor is fixed by the user and is assumed to be constant during the
EM iterations. If we choose a 3D latent space, then a spherical manifold can
be constructed using a PPS with nodes {xm}M

m=1 arranged regularly on the
surface of a sphere in R

3 latent space, with the latent basis functions evenly
distributed on the sphere at a lower density. After a PPS model is fitted to the
data, the data themselves are projected into the latent space as points onto a
sphere (Fig. 3).

The latent manifold coordinates x̂n of each data point tn are computed as

x̂n ≡ 〈x|tn〉 =
∫

xp(x|t)dx =
M∑

m=1

rmnxm

where rmn are the latent variable responsibilities defined as

rmn = p(xm|tn) =
p(tn|xm)P (xm)∑M

m′=1 p(tn|xm′)P (xm′)
=

p(tn|xm)∑M
m′=1 p(tn|xm′)

.

These coordinates lie within a unit sphere. Spherical PPS is particularly well
suited to capture the sparsity and periphery of data in large input spaces which
are due to the curse of dimensionality. In [Staiano, 2003; Staiano et al., 2004]
a data mining framework PPS-based with advanced visualization methods was
proposed to accomplish a number of activities from high-D data visualization
to clustering.

3. Experimental Results

We started from the work of Spellman and his colleagues described in [Spell-
man et al., 1998] which provides a comprehensive catalog of yeast genes whose
transcript levels vary periodically within the cell cycle. In order to produce
the catalogue, samples from yeast cultures synchronized with different exper-
iments were used. In [Spellman et al., 1998] a type of agglomerative hierar-
chical clustering [Eisen et al., 1998] was used in order to identify clusters of
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genes behaving similarly in each experiment and which represent groups of
apparently co-regulated genes. These clusters provide a solid basis for under-
standing the transcriptional mechanism of cell cycle regulation. The data set
used by us, consists of a set 6125 genes subject to four different experiments.
Each experiment consists of measurements at different time points which cor-
respond to 73 parameters.

3.1 Preprocessing

In order to make this data set more tractable by PPS, we applied a pre-
processing phase in which through the use of a nonlinear PCA [Tagliaferri
et al., 1999] we reduced each experiment to 8 measurements and eliminated
the genes whose experiments had to much missing data. Hence, the used data
set consists of 5425 genes and 32 features. Furthermore, since, in general,
microarray data is noisy, it is necessary to resort to some kind of cleaning
procedure, to identify those genes affected from noise process involved in the
generation of data from microarrays. At this aim, we decided to train a PPS
with a high number of latent variables, so that each one is responsible of a
limited number of data points, afterward, we apply a clustering procedure on
the nodes of the manifold in the data space. So doing, a number of identified
clusters containing genes with low variance (i.e. genes whose transcript levels
show a poor periodic behavior) have been thrown away. At completion of this
phase the number of genes to examine was fixed to 2761.

3.2 PPS and yeast gene data: results

We used a PPS with 266 latent variables and 40 latent basis functions and
a clamping factor α set to 0.5. After the completion of the training phase we
projected the data in latent space and computed the responsibility for each la-
tent variable as shown in Fig. 4. On the basis of probability density function
visualized in figure 4 we decided to compute 30 clusters through an hierarchi-
cal clustering procedure. For each cluster we plotted the prototype trend with
respect to the 32 features, as it can be seen in figure 5, which highlights the
periodic behavior of each gene belonging to the cluster.

4. Conclusions

Although this work is at a first stage, Fig. 6 shows interesting trends. Be-
fore discussing the table, we wish to stress that the two clustering procedures
were completely different: Spellman in fact clustered the gene properties us-
ing a priori knowledge on their characteristics and thus he worked with only
209 genes to cluster, while our algorithm made use of statistical properties of
the data with no a priori knowledge. In spite of this, some remarkable pat-
terns may be detected: Spellman’s clusters number 1 falls near entirely in our
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Figure 4. Yeast Gene Data Set: (a) 3D PCA projection (b) Data point projections in the latent
space (c) Data probability density in the latent space

Figure 5. Cluster prototype periodic behaviors and error bars (3σ) showing the standard
deviation of genes from the prototypes for a fixed cluster On the top of each subplot the cluster
number and the number of genes within each cluster is reported
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Figure 6. PPS and Spellman cluster comparisons. On each row are reported the 30 PPS
clusters, while on the columns are the clusters computed by Spellman. The Aij-th entry of the
table correspond to the fraction of Spellman cluster j falling in the PPS cluster i

cluster 8; Spellman’s clusters number 2 and 8 are statistically speaking indis-
tinguishable (our cluster number 28); Spellman’s cluster number 5 appears to
be a sort of statistical waste basket which groups together rather different clus-
ters (7, 8, 17, 20 plus several others with lower significance) which, however,
are topological neighbors in the PPS latent space and can therefore be consid-
ered as "substructures" of a larger cluster. It has, however, to be noticed that
cluster 21 contains entirely the genes belonging to Spellman’s cluster 3. The
most relevant result, however, seems to be the fact that many (13 out of 30) of
our clusters are not mapped by any of the 209 genes in the Spellman’s sam-
ple. Whether these clusters have or have not biological significance will be the
subject of future studies.
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RECENT APPLICATIONS OF NEURAL
NETWORKS IN BIOINFORMATICS

Matthew J. Wood1, Jonathan D. Hirst1
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Abstract In the post-genomic era, bioinformatics methods play a central role in under-
standing vast amounts of biological data. Due to their ability to find arbitrarily
complex patterns within these data, neural networks play a unique, exciting and
pivotal role in areas as diverse as protein structure and function prediction. This
paper presents a critical overview of recent advances in bioinformatics which
have utilised neural network methods.

Keywords: Bioinformatics, neural networks, structure prediction, function prediction, cascade-
correlation.

1. Introduction

Like their biological counterparts, neural networks consists of simple func-
tional units that receive and process signals from other units. The ability of
neural networks to learn arbitrarily complex functions from large amounts of
data, without the need for predetermined models, makes them an ideal tool
to aid in the solving biological problems such as protein structure prediction.
The application of neural networks to bioinformatics is becoming established.
There are a number of reviews of earlier work in the field [Hirst and Sternberg,
1992; Rost and Sander, 1993]. Bioinformatics encompasses a large number
of disciplines, many of which are beyond the scope of this paper. Here we
appraise state of the art applications of neural networks in the field of protein
folding prediction, focusing on studies published in the last 18 months.

The prediction of protein three dimensional structure from sequence is one
of the most important, unsolved problems in molecular biology. Following the
completion of several high profile genome projects, the amino acid sequence
for each gene in a mapped organism’s genome is available. From only this
information, organisms are capable of producing all the proteins necessary to
sustain life. The genomic DNA sequence is translated into RNA, which is tran-
scribed into a series of peptide-bonded amino acids. This polypeptide chain of
amino acids folds and undergoes further modification to become a functioning
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protein. Since a protein’s function is determined by its full three-dimensional
structure, the resolution of this structure is of vital importance in understand-
ing how a protein achieves its function, how this function may be altered in a
disease state and how that disease state may be alleviated. However, structural
determination techniques, such as X-ray crystallography and nuclear magnetic
resonance are costly, relatively slow and are not suitable for all proteins. Thus,
computational methods that predict a protein’s structure from sequence infor-
mation have enjoyed a great deal of attention in the past 50 years.

Contained within the final, three dimensional structure of a functioning pro-
tein are a structural motifs ranging from broad secondary structural elements
which span a number of amino acid residues, to more subtle bonding states
involving a pair of, or even single, amino acids. The role of artificial neural
networks in attempting to predict these structural motifs, whatever their size,
from sequence information alone is broad. A number of sequence represen-
tations are commonly used and range from an orthogonal encoding featuring
20 numbers which describe the amino acid type of a single residue, to larger,
more complex input values comprising information on multiple residues, often
incorporating evolutionary information. Indeed, the use of neural networks in
bioinformatics is so wide reaching, that the networks themselves have recently
been used to derive new sequence representations from known structures, for
use in the prediction of unknown structures [Lin et al., 2002].

2. Protein structure prediction

Recent applications include the prediction of various structural features from
a range of sequence representations [Ahmad et al., 2003; Sheperd et al., 2003;
Jones and Ward, 2003; Chou and Cai, 2003]. The prediction of one such fea-
ture, protein surface accessibility, has benefited greatly from the application of
neural networks. Until recently, the most successful previous methods [Naderi-
Manesh et al., 2001] utilised information theory, but limited predictions to an
accessible surface state. Like many other structure prediction methods, a ma-
jor motivation for the prediction of solvent accessibility is that the derived
information may be used to aid the development of other methods attempting
to predict full three-dimensional protein structure from amino acid sequence.
Whilst capable of correctly allocating 70-75% of residues to a surface acces-
sibility state, the categorical nature of previous methods actually reduced the
amount of information available to methods built upon it, when compared to
available structural data. In an attempt to overcome this inherent problem,
multilayer, feed-forward neural networks were employed to predict real num-
ber surface accessibility values from a 21 bit sequence representation [Ahmad
et al., 2003]. The results were encouraging, with reported mean absolute errors
of 18 to 19.5%, representing a significant improvement in the field.



Recent Applications of Neural Networks in Bioinformatics 93

Along with increases in the accuracy of structure prediction from sequence,
neural networks have also been responsible for large improvements in other re-
cent bioinformatics methods that aim to enhance the understanding of protein
folding by examining the known structure of proteins. Using graph theory, Do-
mainParser [Xu et al., 2000] accurately predicts structural domains (believed
to be one of the fundamental units of protein folding) within a protein. Whilst
reasonably accurate, one of the major drawbacks of DomainParser is that its
predictive ability is far lower when the number of structural domains present in
a protein is not known a priori. In an attempt to overcome this drawback [Guo
et al., 2003], neural networks have been used to predict the number of struc-
tural domains from protein structure. The neural network performance is good,
correctly predicting between 85.1% and 87.6% of protein structural domains.
This information is then used to boost the DomainParser performance, increas-
ing its predictive ability from 74.5% to 81.9% accuracy. Whilst structure from
sequence modelling (discussed above), and structural domain decomposition
are very different problems, the use of neural networks has made recent, sig-
nificant contributions to both long standing research fields.

3. Secondary structure prediction

The accurate prediction of protein secondary structure is both a useful tool
for bench biologists and a good starting point for those attempting to model
three dimensional protein structure [Rost and Sander, 1994]. The secondary
structure of a protein is characterised by a number of regularly occurring struc-
tural elements, including α-helix, β-sheet, and a number of irregularly occur-
ring elements, such as random coils and tight turns [Kaur and Raghava, 2004].
First used in 1988 [Qian and Sejnowski, 1988], neural networks have played a
pivotal role in protein secondary structure prediction. Indeed, neural networks
remain at the heart of many of these types of methods, including the current
most successful method, PSIPRED [Jones, 1999]. Despite a huge amount of
interest in this area [Rost and Sander, 1994; Cuff and Barton, 2000], there
has been little increase in predictive power of neural network methods in the
past 5 years. Whilst a large number of different algorithms have been ap-
plied to this problem (including bidirectional recurrent networks [Baldi et al.,
2000], back-propagating feed-forward networks [Jones, 1999] and cascade-
correlation networks [Wood and Hirst, 2004]). Reported improvements can
largely be attributed to novel sequence and structure representations, rather
than any algorithmic improvement.

Attention has also been focused on the type of algorithm best suited to bioin-
formatic problems, such as protein secondary structure prediction. A recent
study [Wood and Hirst, 2004] compared the learning speed and predictive
accuracy of the commonly used back-propagation neural network, with the
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cascade-correlation learning architecture [Fahlman and Lebiere, 1990]. Us-
ing position-specific-scoring-matrices [Altschul et al., 1997] from multiple
alignments, a constructive cascade-correlation network and a pre-defined back-
propagation network were trained to predict secondary structure. A position-
specific-scoring-matrix is a 20 by n matrix (where n is the number of residues
in a protein sequence), which contains information about the possibility of a
residue substitution at a particular point in the sequence. These matrices have
been used extensively in protein structure prediction work [Jones, 1999; Rost
and Sander, 1994] as they include information on the evolutionary stability
of a particular residue in a particular position, and long-range interactions of
residues. The scoring matrices for each residue in the dataset were combined
with the scoring matrices for seven residues towards the N and C termini of the
protein. This window of 15 residues was presented to the two types of neural
network, which both attained a high degree of predictive accuracy. However,
the cascade-correlation algorithm learnt to predict structure in a shorter time.
Whilst there was no increase in predictive accuracy, the speed increase shown
means that the cascade-correlation network is better suited to handle the larger
databases that are frequently experienced in all fields of bioinformatics.

Along with regular secondary structure prediction, neural networks also fea-
ture prominently in recent methods to predict non-regular protein secondary
structure. Using homology information, and neural network derived secondary
structure predictions as inputs to the main network, α-turn, β-turn and γ-turn
secondary structure can be correctly allocated 78%, 75.5% and 74.0% of the
time, respectively [Kaur and Raghava, 2004; Kaur and Raghava, 2003a; Kaur
and Raghava, 2003b]. Other non-regular secondary structures, hairpins and di-
verging turns have also been predicted using neural networks trained on homol-
ogy information and predicted secondary structure prediction, reaching 75.9%
and 73.9% accuracy respectively [Kuhn et al., 2004].

4. Protein Function Prediction

Another particularly active area of bioinformatics research is that of protein
function prediction. Many believe that this area holds the key to a more com-
plete understanding of protein folding and the opportunity to better develop
novel, targeted drug therapies. As structure is so closely related to function, it
can be argued that the progress in the prediction of protein structure also aids
in this area. Neural networks have been used as a tool to predict a number
of protein function information [Nair and Rost, 2003; Cia et al., 2002; Yang
and Chou, 2004; Ofran and Rost, 2003; Keil et al., 2004]. The prediction of
ligand binding sites is of particular interest, as success in this area would facili-
tate the accurate location of enzyme active sites, the site of biological catalysis
and a common therapeutic target. A recent study [Gutteridge et al., 2003] not
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only reported a novel, neural network based method for predicting enzyme ac-
tive targets, but also highlighted the tight integration between neural network
based bioinformatics tools that is becoming common. The method uses struc-
tural parameters, such as those predicted by neural networks above, as inputs
to neural networks in order to identify residues with a high probability of be-
ing part of an active site. Clustering algorithms then search the neural network
results to produce a prediction. The active site is correctly predicted in 69% of
test cases.

Whilst this method is trained on data from known protein structures, these
data could have been augmented with a larger number of predicted values from
proteins of unknown structure. Indeed, this kind of integration, with new meth-
ods using neural network values directly, is commonly seen in a number of re-
cent bioinformatic studies [Kaur and Raghava, 2004; Kuhn et al., 2004; Guer-
meur et al., 2004; Bindewald et al., 2003].

5. Conclusions

Bioinformatics covers a wide range of topics and neural networks have been
employed to some extent in many of them. However, due to the nature of the
complex network of units, scoring functions and weights, whilst neural net-
works are often a useful and successful tool in bioinformatics, they are often
not able to provide biological insight in their own right, in the way that other
machine learning tools can achieve. They are often seen as a ’black box’,
with an associated inability to explain their model. That said, recent attempts
at gaining this important information from neural networks have been rela-
tively successful. One recent study [Browne et al., 2004] attempted to use
the connecting weights from a trained neural network to produce a decision
tree, which could then be used to search for novel biological information in
existing databases, with an assumed additional intuition. Preliminary results
are encouraging, and further research may allow neural networks to not only
model and make predictions on data, but also provide biological insight based
on those predictions.

Neural network development has far reaching implications, and it is clear
that research into bioinformatics has benefited greatly both in the past, and in
recent years from a neural networks’ ability to map arbitrarily complex func-
tions, without the need for predetermined models. Whilst the lack of intrinsic
biological insight could be seen as a hindrance to their application in this field,
the wide range of successful recent applications including protein structure and
function prediction shows this not to be the case, and that neural network usage
is as healthy as ever in the bioinformatics field.



96

6. Acknowledgements

We thank the "Computational Intelligence for Biopattern Analysis in Sup-
port of e-healthcare" supported by the EU 6th Framework Network of Excel-
lent (contract number: IST e-health 508803) for funding. We also thank the
BBSRC for a PhD studentship.

References
Ahmad, S., Gromiha, M. M., and Sarai, A. (2003). Real value prediction of solvent accessibility

from amino acid sequence. Proteins: Structure, Function and Genetics, 50:629–635.
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, Z., Miller, W., and Lipman, D. J. (1997).

Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic
Acids Res., 25:3389–3402.

Baldi, P., Brunak, S., Frasconi, P., Pallastri, G., and Soda, S. (2000). Bidirectional Dynamics for
Protein Secondary Structure Prediction in Sequence Learning: Paradigms, Algorithms, and
Applications, R.Sun and C.L. Giles. Springer.

Bindewald, E., Cestaro, A., Heiler, M., and Tosatto, S. C. E. (2003). Manifold: protein fold
recognition based on secondary structure, sequence similarity and enzyme classification.
Protein Science, 16:785–789.

Browne, A., Hudson, B., Whitley, D., Ford, M., and Picton, P. (2004). Biological data mining
with neural networks: implementation and applications of a flexible decision tree extration
algorithm to genomic problem domains. Neurocomputing, 57:275–293.

Chou, K-C. and Cai, Y-D. (2003). Predicting protein quaternary structure by pseudo amino acid
composition. Proteins: Structure, Function and Genetics, 53:282–289.

Cia, Y-D, Liu, X-J, and Chou, K-C (2002). Artificial neural network model for predicting protein
subcellular location. Computers and Chemistry, 26:179–182.

Cuff, C. A. and Barton, G. J. (2000). Application of multiple sequence alignment profiles to
improve protein secondary structure prediction. Proteins: Structure, Function and Genetics,
40:502–511.

Fahlman, S. E. and Lebiere, C. (1990). The Cascade-correlation Learning Architecture, Ad-
vances in Neural Information Processing Systems 2. Kaufmann Publishers, Los Altos, CA.

Guermeur, Y., Pollastri, G., Elisseeff, A., Zelus, D., Paugam-Moisy, H., and Baldi, P. (2004).
Combining protein secondary structure prediction models with ensemble methods of optimal
complexity. Neurocomputing, 56:305–327.

Guo, J., Dong, X., Dongsup, K., and Ying, X. (2003). Improving the performance of domain-
parser for structural domain partition using neural network. Nucleic Acids Res., 31:944–952.

Gutteridge, A., Bartlett, G. J., and Thornton, J. M. (2003). Using a neural network and spatial
clustering to predict the location of active sites in enzymes. J. Mol. Biol., 330:719–734.

Hirst, J. D. and Sternberg, M. J. E. (1992). Prediction of structural and functional features of
protein and nucleic-acid sequences by artificial neural networks. Biochemistry, 31:7211–
7218.

Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring
matrices. J. Mol. Biol., 292:195–202.

Jones, D. T. and Ward, J. J. (2003). Prediction of disordered regions in proteins from position
specific scoring matrices. Proteins: Structure, Function and Genetics, 53:573–578.

Kaur, H. and Raghava, G. P. S. (2003a). A neural-network based method for prediction of
gamma-turns in proteins from multiple sequence alignment. Protein Science, 12:923–929.



Recent Applications of Neural Networks in Bioinformatics 97

Kaur, H. and Raghava, G. P. S. (2003b). Prediction of beta-turns in proteins from multiple
alignment using neural network. Protein Science, 12:627–634.

Kaur, H. and Raghava, G. P. S. (2004). Prediction of alpha-turns in proteins using PSI-BLAST
profiles and secondary structure information. Proteins: Structure, Function and Genetics,
55:83–90.

Keil, M., Exner, T., and Brickmann, J. (2004). Pattern recognition strategies for molecular sur-
faces III. binding site prediction with a neural network. Journal of Computational Chemistry,
25:779–789.

Kuhn, M., Meiler, J., and Baker, D. (2004). Strand-loop-strand motifs: Prediction of hairpins
and diverging turns in proteins. Proteins: Structure, Function and Genetics, 54:282–288.

Lin, K., May, A. C. W., and Taylor, W. R. (2002). Amino acid encoding schemes from protein
structure alignments: Multi-dimensional vectors to describe residue types. J. Theor. Biol.,
216:361–365.

Naderi-Manesh, H., Sadgehi, M., Arab, S., and Movahedi, A. A Moosavi (2001). Prediction
of protein surface accessibility with information theory. Proteins: Structure, Function and
Genetics, 42:452–459.

Nair, R. and Rost, B. (2003). Better prediction of sub-cellular localization by combining evolu-
tionary and structural informatioin. Proteins: Structure, Function and Genetics, 53:917–930.

Ofran, Y. and Rost, B. (2003). Predicted protein-protein interaction sites from local sequence
information. FEBS Letters, 544:236–239.

Qian, N. and Sejnowski, T. J. (1988). Predicting the secondary structure of globular proteins
using neural network models. J. Mol. Biol., 202:865–884.

Rost, B. and Sander, C. (1993). Progress in protein-structure prediction. Trends Biochem Sci,
18:120–123.

Rost, B. and Sander, C. (1994). Combining evolutionary information and neural networks to
predict protein secondary structure. Proteins: Structure, Function and Genetics, 19:55–72.

Sheperd, A. J., Gorse, D., and Thornton, J. M. (2003). Novel approach to the recognition of
protein architecture from sequence using fourier analysis and neural networks. Proteins:
Structure, Function and Genetics, 50:290–302.

Wood, M. J. and Hirst, J. D. (2004). Predicting protein secondary structure by cascade-correlation
neural networks. Bioinformatics, 20:419–420.

Xu, Y., Xu, D., and Gabow, H. N. (2000). Protein domain decomposition using a graph-theoretic
approach. Bioinformatics, 16:1091–1104.

Yang, Z. R. and Chou, K-C. (2004). Predicting the linkage sites in glycoproteins using bio-basis
function neural network. Bioinformatics, 20:903–908.



AN ALGORITHM FOR REDUCING
THE NUMBER OF SUPPORT VECTORS

Davide Anguita, Sandro Ridella and Fabio Rivieccio
Dept. of Biophysical and Electronic Engineering,
University of Genova, Genova, Italy.

{anguita,ridella,rivieccio}@dibe.unige.it

Abstract According to the Support Vector Machine algorithm, the task of classification
depends on a subset of the original data-set, which is the set of Support Vectors
(SVs). They are the only information needed to compute the discriminating
function between the classes and, therefore, to classify new data. Since both
the computational complexity and the memory requirements of the algorithm
depend on the number of SVs, this property is very appealing from the point
of view of hardware implementations. For this reason, many researchers have
proposed new methods to reduce the number of SVs, even at the expenses of
a larger error rate. We propose in this work a method which aims at finding
a single point per each class, called archetype, which allows to reconstruct the
classifier found by the SVM algorithm, without suffering any classification rate
loss. The method is also extended to the case of non-linear classification by
finding an approximation of the archetypes in the input space, which maintain
the ability to classify the data with a moderate increase of the error rate.

Keywords: Archetypes, Support Vectors, Compression

1. Introduction

One of the drawbacks of the SVM [Cortes and Vapnik, 1995] is that the
number of Support Vectors (SVs) can be a large fraction of the training set.
This is inconvenient both from a cognitive point of view, because a large num-
ber of archetypes is difficult to interpret, and for computational reasons, be-
cause the number of operations needed by the SVM for performing the feed-
forward phase grows linearly with the number of SVs. Some proposals have
recently appeared in the literature, which try to lower the number of SVs ([
[Downs et al., 2001; Schölkopf et al., 1998]]).

This work proposes a new method that identifies only one archetype for each
class resulting, in general, in a very large information compression. Despite
this achievement, no information loss is suffered when a linear discriminating

99

B. Apolloni et al. (eds.), Biological and Artificial Intelligence Environments, 99–105 
© 2005 Springer. Printed in the Netherlands. 



100

function is adopted, while some loss exists in the nonlinear case, albeit it can
be lowered by increasing the number of archetypes.

In the following section, we briefly revise the SVM and propose a method
to extract the archetypes, which exemplify the two classes, in the linear case.
In the same section we show how our method can be extended to the nonlinear
case, that is when the SVM makes use of kernels for mapping the data from the
input to the feature space, and describe a method for (approximately) mapping
the archetypes back in the input space. In the section 3 we describe some
experimental results on both linear and nonlinear classification cases. Some
final considerations end the work.

2. Archetypes Extraction

Let us consider a two–class labelled data-set {(xi, yi), i = 1 . . . n}, where
xi ∈ �m and yi = ±1.

The hyperplane constructed by the SVM is expressed in terms of a linear
combination of the patterns of the training set [Cortes and Vapnik, 1995]:

f(x) = sign (w · x + b) = sign

(
n∑

i=1

αiyixi · x + b

)
(1)

where the coefficients are obtained by solving a constrained quadratic pro-
gramming problem [Cortes and Vapnik, 1995].

We define the archetypes a+ and a− (one for each class) as the points lying
on the axis normal to the hyperplane and as close as possible to the mass centers
of the two classes (c+, c−), as depicted in Fig. 1. Note that the archetypes plus
their distance from the hyperplane embed the entire information of the SVM
after learning and, at the same time, provide some average information about
the position of the patterns in the input space.

The archetypes can be found by minimizing

min
a+

l ,a−
l

1
m

m∑
l=1

[(
a+

l − c+
l

)2 +
(
a−l − c−l

)2]
(2)

subject to
w = μ

(
a+ − a−) (3)

where μ is a positive value. Eq. (2) minimizes the squared distance of the two
archetypes from the two centers of gravity, while the constraint forces them to
lie on a straight line perpendicular to the separating hyperplane.

Due to the lack of space we directly state the final form for the two archetypes:

a± =
1
2

n∑
i=1

γ±
i xi (4)
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Figure 1. The archetypes (a+, a−) with respect to the optimal separating hyperplane (solid
line) and the centers of gravity of the two classes (c+, c−).

where γ±
i is defined as

γ±
i =

n + yi (n− − n+)
2n+n− ± χ

αiyi

‖w‖2 (5)

and χ equals:

χ =
1

n+

n∑
i,j=1

yi=+1

yjαjxi · xj −
1

n−

n∑
i,j=1

yi=−1

yjαjxi · xj (6)

If we let d be, for example, the distance of a− from the separating hyper-
plane, then:

d =

∣∣w · a− + b
∣∣

‖w‖ (7)

and we can rewrite eq.(1) as:

f(x) = sign
((

a+ − a−) · x− (a+ − a−) · a−− d‖a+ − a−‖
)

(8)

The results obtained above can be extended to the feature space by consid-
ering the mapping x→ Φ(x).

However, the archetypes lie in the feature space and, in general, will not
have a corresponding representation in the input space. This is a severe draw-
back for at least two reasons: (1) the nonlinear mapping Φ(·) is usually un-
known and (2) the lack of a corresponding archetype in the input space van-
ishes the effort of extracting information from a single representative sample
of the entire class.
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We suggest to use a result by Smola et al. [Schölkopf et al., 1998], which
allows to perform an approximate inverse mapping and build an image of the
archetype in the input space.

In the case of a gaussian kernel the image of the archetypes in the input space
can be found by the following iterative procedure [Schölkopf et al., 1998]:

z±(t + 1) =
∑n

i=1 γixik (xi, z
±(t))∑n

i=1 γik (xi, z±(t))
(9)

which can be stopped when zt+1 is similar enough to zt.
We extend in this paper the above result to non stationary kernels [Genton,

2001], which can better tackle some real-life problems, such as the polynomial
one:

k (x, z) = (x · z + 1)r (10)

for which the following iterative procedure can be derived:

z±(t + 1) =

n∑
i=1

γixi (xi · z±(t) + 1)r−1

n∑
i=1

γi (xi · z±(t) + 1)r

(
z±(t) · z±(t) + 1

)
(11)

3. Experimental results

We selected two data-sets for our experiments, which allows us to show
some of the interesting characteristics of archetypes. The first data-set (FACE)
has been used for gender recognition [O’Toole, 1988] and consists of photos
of male and female faces, in gray levels.

This data-set contains a total of 90 images of male (44) and female (46)
faces. Each photo is in grayscale (256 levels) and is composed of 60 × 60
pixels. Note that each image shows only the face of the subject: no extra
information (e.g. hair, neck, ears) is present and none of the subjects shows
characteristic signs other than the natural ones.

We performed an experiment with the FACE data-set, to check if the archetypes
retain the same kind of information as the SVs do. In fact, each SV, being also
a training pattern, is an actual face, while the centers of gravity of each class
are simply the average of all male or female faces. The dimensionality of the
input space is very high, so we do not need to switch to the feature space to
find a linear separation.

The found archetypes appear as faces, as reported in Fig. 2. This result
is valuable both because it shows that the input space has some structure and
because a point t belonging to the segment connecting the archetypes:
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t (λ) = (1− λ) · a+ + λ · a− (12)

can be reviewed as a step of the morph, here above parameterized by λ, from
the archetypal male to the archetypal female. This can be interesting from a
cognitive point of view as the point t (λ) bears a mix of the interesting features
of the two archetypes [Johnstone et al., 2001].

Figure 2. Female (left) and male (right) archetypes.

The second one (IRIS) is the well-known Fisher’s Iris data-set [Duda and
Hart, 1973].

The full IRIS data-set consists of a 150 patterns of 5 measurements made on
Iris flowers belonging to 3 different classes: Setosa, Versicolor and Virginica.
We select two classes (Setosa and Virginica) and two features in order to be
able to plot the results.

An interesting feature of the approximate archetypes is that their position
reveal, in some way, the complexity of the separator: to show this relation, we
focus on the non–linearly separable classes Versicolor and Virginica. Let us
consider a Gaussian kernel with several values of σ2. It is well-known that
as σ2 decreases, the complexity (i.e. the Vapnik-Chervonenkis (VC) dimen-
sion) of the SVM classifier goes toward infinity. It is expected, therefore, that,
for large values of σ2, the separator behaves almost like the linear one, while
it differs greatly from it when small values are selected. Fig.(3) shows the
archetypes, found by the procedure described in Section 2, for different values
of the σ2 parameter. As the complexity of the separator increases, the approx-
imate archetypes approach the one derived by the linear separator.

The table Tab.1 is displayed for the sake of comparison between standard
SVM classification and archetypes classification. Tab.1 shows the different
requirements in number of operations needed to accomplish the classification
task on new data-points in the SVM case or selecting the class to which the
closest archetype belongs. The notable difference is due to the different scal-
ings between the methods: O(nSV ·ni) for SVM and O(ni) for the other case.

Also, in view of an hardware implementation, the memory space in Kilo-
bytes required by the two algorithms is shown (we suppose to store double
precision values). The storage space is also subject to a scaling similar to the
above illustrated. The above results confirm the idea that when additional
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Table 1. Comparison of the estimated number of operations for the classification task and of
the estimated required storage space in Kilobytes for the considered data-sets.

Required Operations Req. Storage Space in KB

Datasets SVM Archetypes SVM Archetypes

FACE60 367251 14400 1434.80 56.30
IRIS 60 8 0.30 0.03

constraints are present, besides a fair performance requirement, one should
carefully consider the option of adopting a system which relies on a com-
pressed SV information against a partial loss in the generalization capability.

4. Conclusions

In this work, a method to extract two archetypes from a two–class data-
set and a linear separation is presented, allowing a considerable information
compression with respect both to the original data-set and to a classification
through support vectors. The method can be extended to non–linear kernel–
based discriminating functions by approximating the true archetypes in the
feature space with two points in the input space. The experimental results show
the consistency of the method and the possible use of the obtained archetypes
for a very fast (albeit less accurate) nearest–neighbor classification.

1.2

1.4

1.6

1.8

2

2.2

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

Figure 3. Iris Virginica VS Versicolor. The paths of the approximate archetypes (boxes) for
increasing σ2 are shown. Large crosses indicates the archetypes in the linear case.



Reducing the Number of Support Vectors 105

References
Cortes, C., Vapnik, V.N. Support Vector Networks, Machine Learning Vol. 20, pp. 1–25, 1995.
Downs, T., Gates, K.E., Masters, A. Exact simplification of support vector solutions Journal of

Machine Learning Research, Vol. 2, pp. 293–297, December 2001.
Duda, R.O., Hart, P.E. Pattern Classification and Scene Analysis John Wiley & Sons, see page

218, 1973.
Genton, M.G. Classes of Kernels for Machine Learning: A Statistics Perspective, Journal of

Machine Learning Research, Vol. 2, pp. 299–312, 2001.
Johnstone, V.S., Hagel, R., Franklin, M., Fink, B., Grammer, K. Male facial attractiveness

evidence for hormone-mediated adaptive design. Evolution and Human Behavior, Vol.22
pp. 251–267, 2001.

O’Toole, A.J., Millward, R.B. and Anderson, J.A., A physical system approach to recognition
memory for spatially transformed faces Neural Networks, Vol. 1, pp. 179–199, 1988.

Schölkopf, B., Burges, C.J.C., Smola, A.J. Advances in kernel methods: support vector learning
MIT Press, 1998.

Schölkopf, B., Knirsch, P., Smola, A. and Burges, C. Fast approximation of support vector
kernel expansions, and an interpretation of clustering as approximation in feature spaces In
P. Levi, M. Schanz, R.-J. Ahlers, and F. May, editors, Mustererkennung 1998 — 20. DAGM-
Symposium, Informatik aktuell, pp. 124–132, Berlin, Springer, 1998.



GENETIC DESIGN OF LINEAR BLOCK
ERROR-CORRECTING CODES

Alan Barbieri, Stefano Cagnoni, and Giulio Colavolpe
Università di Parma
Dipartimento di Ingegneria dell’Informazione
Parco Area delle Scienze 181/A
43100 Parma - ITALY

barbieri@tlc.unipr.it, cagnoni@ce.unipr.it, giulio@unipr.it

Abstract
In this paper we describe a new method, based on a genetic algorithm, for

generating good (in terms of minimum distance) linear block error-correcting
codes. We offer a detailed description of the algorithm, with particular regard
to the genetic operators (selection, mutation and crossover) which have been
specifically adapted to the problem. Preliminary experimental results indicate
that the method can be very effective, especially in terms of fast production of
good sub-optimal codes.

Keywords: Genetic algorithms, error-correcting codes, linear block codes, minimum dis-
tance, distance spectrum.

1. Introduction

In the technical literature, the problem of finding good error-correcting codes
has been tackled by many authors using different algorithms and techniques.
As an example, a linear programming-based approach has been recently used
in [Ferrari and Chugg, 2003] to optimize the distance spectrum of linear block
codes whereas in [Farkaš and Brühl, 1994; Farkaš and Herrera-Garcia, 2001]
a search algorithm based on the McCluskey theorem [McCluskey, 1959] has
been presented.

The search space for the problem of finding good codes is too large for
many of the standard search algorithms. In such cases, genetic algorithms can
be very effective in finding good solutions in a relatively short time.

A genetic approach to code generation was followed in [Dontas and Jong,
1990]. In this case, however, the target was to find the entire codebook. That
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requirement makes such an approach useful, in practice, only for codes whose
parameters are no larger than few units.

Genetic algorithms have previously been used also for other purposes re-
lated to coding theory: for instance, as in [Maini et al., 1994; Cardoso and
Arantes, 1999], they have been applied to soft-decoding problems.

To partially limit problem complexity, in the approach described in this pa-
per, a genetic algorithm is used to search a space restricted to the sub-class of
linear codes, by generating the columns of their generator matrix. The algo-
rithm maximizes a fitness function that takes into account not only the mini-
mum distance of the code, which is the main quality factor for a linear code,
but also the distance spectrum distribution. Doing so, once a certain distance is
reached, for which several codes can be found, the algorithm goes on searching
according to that secondary quality factor.

In [Brouwer and Verhoeff, 1993] a table of minimum-distance bounds for
binary linear codes has been presented, while in [Hill and Traynor, 1990] the
authors demonstrate that some codes do not exist at all, thus obtaining some
new minimum-distance bounds. These bounds may be used as references in
evaluating the effectiveness of new search algorithms.

2. Theory of linear block codes

In this section, we introduce some definitions and theoretical results regard-
ing error-correcting codes, with particular attention to linear block codes.

Suppose one wants to transmit a sequence of k binary symbols (word), col-
lected for convenience in a row vector u of k elements, over a channel affected
by additive white Gaussian noise. At the receiver end, due to the channel noise,
a corrupted word will be detected. We will denote this corrupted sequence of
bits by u + e, where the sum is modulo 2 and e represents a sequence of
bits whose Hamming weight (i.e., the number of its non-zero elements) is the
number of corrupted bits.

A binary error-correcting code can be used to reduce the probability of word
errors. The coding operation consists of the following transformation:

c = Γ(u) (1)

where c is the codeword, represented by an n-bit row vector, with n > k,
that is transmitted on the channel in place of u. This transformation defines a
codebook C of 2k codewords, taken from a set of 2n possible words. It is worth
noting that there is a tradeoff between the correction capability of a code and
the redundancy introduced due to the insertion of new bits in the transmitted
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word. An important parameter which takes into account this tradeoff is the rate
of the code, defined as

R =
k

n
, 0 < R < 1 (2)

which is stricly related to code efficiency—the higher the value of R (which
implies low redundancy), the lower the correction code capability.

An important parameter which determines the asymptotic performance of
a block code for low error probabilities is the code minimum distance. It is
defined as the Hamming distance between the two nearest codewords, i.e.,

dmin = min{d(ci, cj)|ci 	= cj ∈ C} (3)

where d(ci, cj) represents the Hamming distance between codewords ci and cj

and is defined as the number of elements in which these two codeword differ.
An upper bound on the word error probability, the so-called union bound, may
be obtained from knowledge of the distance spectrum of the code. For each l ∈
{0, 1, . . . n}, let us define al as the average number of codewords at distance l
from a given codeword, i.e.,

al =
1
2k
|{(i, j)|d(ci, cj) = l}| (4)

where | · | represents the cardinality of the corresponding set. We define a =
(a0, a1, . . . , an) as the distance spectrum of the code [Proakis, 2001], with
a0 + a1 + . . . + an = 2k. With this definition, the minimum distance is the
first k > 0 such that ak > 0. It is worth noting that, for fixed values of k
and n, codes with greater dmin are asymptotically better. However, the word
error probability is related to the entire spectrum, and not only to the minimum
distance. Furthermore, we define the weight spectrum for the code as

wl = |{i|w(ci) = l}| (5)

where w(·) stands for the Hamming weight.
Finally, a code is said to be systematic if, for every possible u, the corre-

sponding codeword is c = [u|p], where p is a (n−k)-bit row vector containing
the so-called parity bits (the redundancy bits).

A code is said to be linear if both the following conditions hold

0 ∈ C
∀c1, c2 ∈ C, c1 + c2 ∈ C . (6)

In this case, Γ is a linear transformation and eq. (1) becomes c = uG, where
G is a k×n binary matrix, called generator matrix. It is easy to show that, for
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given values of k and n, there are 2kn possible codes, which is a huge space for
a search algorithm. An important result of coding theory is that a linear block
code maintains the same distance spectrum (and hence the same performance),
if we apply linear operators to the generator matrix. Therefore, by applying
suitable transformations, we can obtain an equivalent systematic code from
a non-systematic one. For this reason, we can reduce the complexity of our
search by considering only systematic codes, whose generator matrices G can
be written as

G = [Ik|Pt] (7)

where Ik is the identity matrix of size k, P (of dimension (n−k)×k) is called
parity matrix, and (·)t denotes matrix transposition. In this case, defining the
code parity check matrix as

H = [P|In−k] (8)

we find that
c ∈ C ⇔ cHt = 0 . (9)

Therefore the parity check matrix helps in verifying if a given word is a valid
codeword.

It is straightforward to verify that, for a linear code, the distance spectrum
and the Hamming weight spectrum correspond, that is,

al =
1
2k
|{(i, j)|d(ci, cj) = l}|

= |{i|w(ci) = d(ci,0) = l}| . (10)

Therefore, if a code has a given dmin, that implies that there exists at least a
codeword with Hamming weight dmin and, equivalently, that there is a set of
dmin columns of matrix H which sum to the all-zero column.

In [McCluskey, 1959] a simple theorem, that relates the minimum distance
and the parity check matrix, is presented.

McCluskey Theorem: P is a parity check matrix for a code of minimum
distance dmin if and only if

1 the weight of each column of P is greater than or equal to dmin − 1;

2 the weight of the sum (modulo 2) of k columns is greater than or equal
to dmin − k.

A proof of this theorem can be found in [McCluskey, 1959]. As we will see
in the next sections, the genetic algorithm under consideration is essentially
based on the result provided by this theorem.



Genetic design of linear block error-correcting codes 111

3. Genetic algorithm

In this section we present a general overview of the proposed genetic algo-
rithm. The algorithm is aimed at finding good codes, i.e., codes with given k
and n, and maximum dmin. When new maximum-distance codes are found,
their parity matrix and distance spectrums are saved. In our implementation,
we co-evolve more than one fixed-size population at one time.

Each individual is encoded as the (n− k)× k bits of the parity matrix P.
We used a classical genetic algorithm, with some adaptations to the problem

under consideration, which will be discussed in details later. Each iteration of
the algorithm for a single population of size M consists of the following steps:

1 selection;

2 column sorting: This phase is peculiar to the problem under considera-
tion and is propaedeutic to crossover. The columns of every individual
are sorted from best to worst, according to a criterion which will be
specified in the following;

3 crossover: for every couple of consecutive individuals (within the ran-
dom population ordering induced by selection), crossover is performed
with fixed probability;

4 mutation: a bit is flipped with fixed probability;

5 check for population degeneration: the genetic diversity of the popu-
lation is checked to verify whether the number of genes having equal
values in the great majority of individuals has reached a fixed critical
threshold.

Population is initialized with randomly generated individuals.
It may be advantageous to co-evolve more than one population at the same

time, to increase diversity. Every population has different parameters and
evolves independently of the others for most of the time. When a population
degenerates, it is crossed over with another one by swapping some of its indi-
viduals, randomly chosen, with individuals, randomly chosen, belonging to the
latter. As a further method to avoid population degeneration, before population
crossover, a fixed portion of the individuals, randomly selected, are replaced
with randomly generated ones.

Two populations may be crossed over, with given probability (randomly-
generated before the first iteration) even if they have not degenerated.
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The fitness function and the genetic operators are more precisely defined as
follows.

Fitness : let C be an individual with distance spectrum a = (a0, a1, . . . , an)
and minimum distance dmin; fitness is defined as:

f(C) = dmin + 1−
n∑

i=dmin

ai2−k(i−dmin+1) . (11)

The integer part of the fitness value is the minimum distance, while the frac-
tional part is related with the distance spectrum. Exact evaluation of dmin and
of the distance spectrum is a computationally demanding problem: in [Dumer
et al., 2003] authors prove that it is impossible to find algorithms that approx-
imate dmin in polynomial time. For this reason, fitness evaluation is the most
time-consuming task of our genetic algorithm.

Selection : for each population, we use a classical tournament-based elitistic
scheme, whose number of participants is randomly generated (within a user-
defined interval) when the population is initialized.

Crossover : during initialization, a crossover rate R is also randomly gener-
ated (within a user-defined interval) for each population. Crossover is always
made between consecutive individuals up to the (R · M)th individual in the
population. The order in which individuals are sorted is the order in which
tournaments, for which each individual is a winner, have been performed on
randomly selected individuals. Therefore, using a deterministic scheme on the
ordered population to perform crossover has no biasing effect on the search.

Crossover is performed by picking a random integer C between 1 and the
number of columns Nc in an individual, and then swap the columns from C+1
to Nc of the two individuals undergoing crossover.

Before crossover is performed, however, the columns making up an individ-
ual are sorted from best to worst. The “quality” of a column is related to the
number of groups of linearly-dependent columns which include it: the better
the column, the lower the number of groups of linearly-dependent columns in
which it appears. This sorting operation is aimed at increasing the probability
that the new individuals generated by crossover have a high fitness. As con-
vergence occurs, the best individuals tend to be similar to one another, which
means that it is quite likely that the best columns be the same in many individ-
uals.

With no ordering, the best columns would be in random positions within the
generator matrices and could become dominant characters of the individuals.
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That means that it would be very likely to find them repeated more than once
within the same individual, with obvious disrupting effects on column quality
(the worst column one can think of is one which appears twice or even more
frequently in the same matrix, according to the above-reported quality crite-
rion). On the contrary, a crossover between two ordered individuals makes it
unlikely to produce matrices having sets of identical columns. The fact that,
doing so, the swapped columns are always bad-quality columns is less rele-
vant, since the quality criterion is local to a single matrix, and a column which
is bad for a matrix may be good for another one, while having two identical
columns in the same matrix always affects fitness negatively.

Mutation : for every bit of every code, a weighted coin toss decides whether
that bit must be flipped; the mutation parameter is randomly generated before
the first iteration with values belonging to a given interval. This parameter is
adaptive and is adjusted according to the following rule: if, at a certain itera-
tion, the best fitness of the population does not change, mutation rate increases
as pnew = pβ

old, where β < 1 is a parameter that is randomly generated at
initialization; otherwise, if the best fitness has increased, pnew = p0. This
behaviour should prevent convergence on local maxima and, in addition to
tournament selection, premature convergence from occurring.

4. Results

In this section, we show results of several runs of the genetic algorithm.
We have used two different kinds of code: (34,15,9) and (21,11,6), where the
notation (n, k, dmin) indicates a n×k code with upper bound on the minimum
distance dmin (see [Brouwer and Verhoeff, 1993]).

We cannot repeat out experiments with other existing algorithms, because
the algorithm presented in [Farkaš and Brühl, 1994] was not completely de-
tailed, while the genetic one in [Dontas and Jong, 1990] uses a different ap-
proach to generate codes, i.e., it generates the entire codebook instead of the
generator matrix, thus it was not possible (for computational reasons) to apply
it to the considered test cases. However, in the case of the (34, 15, 9) code, the
algorithm in [Farkaš and Brühl, 1994] (that is based on classical techniques)
had been already tested by its authors and some results are reported in [Farkaš
and Herrera-Garcia, 2001].
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n a b best fitness codes found

1 35 730 8.999603 1
2 28 463 8.999573 1
3 5 1309 8.999359 1
4 28 403 8.999664 2
5 34 2039 8.999481 1
6 27 295 8.999573 1
7 42 304 8.999451 2
8 22 1716 8.999237 1
9 25 250 8.999359 2
10 19 143 8.999390 1

n a b best fitness codes found

1 39 104 6.936035 1
2 62 62 6.935547 1
3 34 34 6.933594 1
4 N.A. 55 5.995583 1
5 172 172 6.935059 1

Table 1. Convergence and best code found in each run for the (34,15) and the (21,11) code: n
is the experiment, a the iteration when the first code with dmin=8 and 6 respectively has been
found and b the iteration when the best-fitness code has been found. The last column reports the
number of codes with best fitness that have been found in each run.

Experiments with (34,15,9) codes

We have performed ten experiments, each with different random initializa-
tion and with the following parameters: 4 populations composed by 100 in-
dividuals. Each run has been stopped after 2500 iterations. The first part of
Table 1 presents some results regarding convergence, for all ten experiments.
The best fitness was 8.999664 and was reached in the fourth experiment, on
the 403rd iteration. Two different codes corresponding to this fitness have
been found, but we cannot report here their parity matrices due to space limi-
tations. It is worth noting that the best codes found have dmin = 8, while the
upper bound of the (34,15) code is dmin = 9 1. However, it should be also
noticed that only very few codes with dmin = 9 have been reported in liter-
ature [Farkaš and Herrera-Garcia, 2001], and that a population of 100, as we
used in our preliminary tests for time restrictions, is probably by far too small
to explore such a huge space really effectively.

Experiments with (21,11,6) codes

In this case, we ran a total of 5 experiments, with 3 populations of 200 indi-
viduals and a maximum of 1000 iterations. The second part of Table 1 reports
the iteration at which each run reached convergence (i.e., the best fitness). As
can be noticed, in this case the algorithm has been able to reach the theoreti-
cal bound on the minimum distance (dmin = 6) for the considered code in all
experiments but one.
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5. Discussion

The search space to be explored in generating linear error-correcting block
codes is extremely challenging, first of all for its size, but also for the dis-
rupting effects that a single bit flip may have on code quality. In defining the
fitness, by considering not only the code minimum distance by itself, but also
the distance spectrum, we managed to shape the fitness landscape in order to
make it smoother and richer of information that could point to good solutions.

Although very preliminary, results reported in the previous section show
that genetic algorithms may be an interesting way to find good linear block
error-correcting codes.

In particular, this approach is able to produce good sub-optimal codes in
very few iterations. It is worth noticing how, in the most complex case, the
first appearance of a code having the minimum distance finally reached by the
algorithm has always occurred within the first 42 iterations.

As regards computation efficiency, about 3 hours of computation time are
required to run 1000 iterations of the algorithm applied to the (34,15) code,
with four populations of size 100, on a 2.6 GHz-Pentium class PC.

Future developments of our research will be aimed, in first place, at ex-
ploring how a large increase in population size can improve results and at im-
proving effectiveness of the search strategy by further adapting the genetic
operators to the challenges posed by the problem under consideration.

Notes

1. It is still a matter of discussion whether it could be possible to find a solution with dmin = 10. Up
to now, no one could find it, nor could anybody demonstrate that it cannot exist.
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Abstract This paper describes the design of a digital architecture suitable for the classi-
fication of large quantities of measurement data by means of a method based
on the Support Vector Machines (SVMs). The proposed approach can be ap-
plied for solving general inverse modeling problems and for processing com-
plex measurement data requiring real-time processing, possibly in a distributed
mode over a number of physically small and geographically separated ’compu-
tational nodes’. A problem of nonlinear channel equalization and a classification
task from high energy physics are presented as discussed as two case studies for
which the ability of achieving real-time processing is of paramount importance.
The performance of such architectures is then analyzed in terms of its speed of
execution, occupancy of the hardware modules available in a Virtex II FPGA
chip, and classification error.

Keywords: Support Vector Machines, High Energy Physics, Digital Architectures, FPGA

Introduction

Several data analysis problems require the processing of large amounts of
data in streaming in from a number of data acquisition devices. As it is often
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the case in this context, the computation has to be performed at a rate that is at
least as fast as the incoming data rate, thus resulting in a real-time constraint
that can pose a challenge even for the powerful general-purpose computers
available today. In order to satisfy the real-time constraint, a common solu-
tion is that of employing hardware-based devices that can handle the incom-
ing stream of data by performing the required operations directly in hardware,
possibly in a multistage arrangement. A classic approach to data analysis is to
determine an appropriate algorithm that will perform the desired analysis and
code it in a suitable language. However, in many applications, for example
data classification, the algorithm that is required to process the incoming data
is not known, even though one has some examples of the desired output. In
such cases, an approach that has gained the attention of the scientific commu-
nity in recent years is that of letting the machine use these known examples
to learn a suitable algorithm that can be used to process the data stream. This
technique has been used toward the solution of problems from a wide range of
application area, including fault recognition, digital signal processing, pattern
recognition, and many others. In its generality, the technique entails the de-
vising of an algorithm that learns a typically non-linear unknown relationship
on the basis of a set of input/output measurements Z. A well known example
of this technique are the Artificial Neural Networks (ANNs) which have been
applied with various degrees of success. The critics of the ANN-based algo-
rithms point out that the learning process can get stuck in a local minimum
during its iterative search for an optimal configuration. While many solutions
have been proposed and implemented to overcame this problem, in principle
there is no guarantee that the ANN-based algorithm converges toward an opti-
mal solution and hence alternative approaches have been proposed. Recently,
the Kernel-Based Methods (KBMs) [B.Schölkopf, et al., 2002] has been pro-
posed as a new paradigm of learning by examples. KBMs are based on the
Statistical Learning Theory (SLT), formulated by Vapnik and Chervonenkis in
the ’70s [Vapnik, 1998]. The SLT basis provides a solid theoretical background
that guarantees some desirable properties of their underlying algorithms. An
example of KBMs are the well known Support Vector Machines (SVMs) for
which the search for an optimal non-linear relations between inputs and outputs
is transformed in the solution of a constrained quadratic optimization problem,
which Ű by its own nature Ű can have exactly one solution. Hence, the process
cannot get stuck in local minima and the solution found is guaranteed to be the
one corresponding to the optimal configuration. The outcome of the SVM-
based algorithm is a vector of parameters that are used to estimate the class of
new inputs during the so called forward phase. In many applications, the clas-
sification of new input data during the forward phase has to be completed very
quickly to keep up with the stream of data coming in. Also, in several contexts,
the input data are collected by a number of sensors and transducers that must
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satisfy hard constraints for example regarding physical dimension, power con-
sumption, cost, or geographical distribution. Examples include the distributed
sensor networks used to monitor some environment, or the data produced by
the myriad of sensors in a high-energy physics experiment. In the context of
applications outlined above, a standard general purpose computer might be
hard pressed to meet the various requirements since it might not yield the re-
quired computational performance to operate in real time, or it cannot satisfy
the low power and cost. An alternative approach can be that of resorting to a
hardware implementation of the corresponding KBM. The realization of fast
KBMs through a hardware implementation has become an important area of
research: after the first preliminary studies several analog and digital imple-
mentations of KBMs for both learning and forward phases have been proposed
[Anguita, et al., 2003], [Genov, et al., 2003]. This paper presents the digital
implementation on of an SVM on a Field Programmable Gate Array (FPGA)
hardware system to achieve real-time execution during the forward phase. By
using an FPGA implementation, fast prototyping could be achieved and the re-
sulting circuits could be functionally tested through simulation and their speed
performance evaluated very quickly. Once these preliminary tests were car-
ried out satisfactorily, the FPGA hardware was configured so that it realized
the corresponding circuits and the testing could be performed directly on the
hardware implementation. (A third phase could be carried out later on to trans-
form the resulting FPGA circuits in a silicon chip, which could be advisable
when for a full-fledged production run.) As a case study, two different applica-
tions were analyzed and their performance was derived: a telecommunication
problem, such as a channel equalization, characterized by few parameters, and
a scientific application, such as a tagging problem of High Energy Physics
(HEP) experiments, where a big amount of measures must be processed in real
time. Section II briefly describes the problem formulation, while section III de-
scribes the compared architectures and their performance. The two case studies
are introduced and analyzed in the section IV, followed by some conclusions.

1. Problem Formulation

A general inverse modeling problem is defined as follows: a discrete signal
u(n) acting as the input of a non linear discrete system, having unknown dy-
namics, must be estimated on the basis of the signal x(n) observed at the output
of the system itself. As the unknown system can introduce a correlation on the
signals, several output samples are observed in order to provide an input signal
estimate û (n−D), where D represents the intrinsic delay of the estimator. In
particular, such an estimate is given on the basis of the r-dimensional feature
vector: x

(r)
n = [x (n) , x (n− 1) , . . . , x (n− r + 1)]T . In order to build such

an estimator KBMs use a set Z of input/output samples called the training set:
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Z =
{

x
(r)
i , ui

}N

i=1
. This is also the case of a general measurement system,

where a set of measures each one composed by an r-attributes vector must
be classified according to a given rule. Thus, our problem can be defined in
the following way: given a set of measures Z obtained by an unknown mea-
surement system, provide its ’best’ relationship, from a generalization point
of view. The SLT establishes the conditions under which such a relationship
is the best [Vapnik, 1998]. SVMs are a special kind of KBMs, and their final
function is:

û (n−D) =
∑
i∈SV

αiuiK
(
x

(r)
i , x(r)

n

)
+ b (1)

where SV = {i : αi 	= 0, i = 1, . . . , N} is the indexes set of the Support Vec-
tors (SVs), that is the only input measures important for the classification. The
parameters αi and b are found after the resolution of a constrained quadratic
optimization problem [B.Schölkopf, et al., 2002], whilst K() is a kernel func-
tion, for example a Gaussian kernel [B.Schölkopf, et al., 2002].

2. System Architecture

To implement eq. 1, several FPGA based architectures were designed and
tested using a Xilinx Virtex XC2V1000 embedded on a MEMEC Board (see
Figure 1). The advantage of this approach consists of the flexibility offered by
the high level description of the design in the VHDL language which allowed
one to quickly and easily change the implementation parameters in order to fit
the specifics of the application to be solved and to experiment with different
architectural approaches. In particular, several versions were designed, com-
paring the effects of using a special purpose module based on the CORDIC
algorithm [Andraka, 1998] for its exact computation of the exponential func-
tion and that of the much simpler module based on small lookup table (LUT)
that traded simplicity and compactness for a much coarser approximation of
the calculations of the exponential functions needed by the Gaussian Kernel.

3. Two case study

The first case study used to assess the performance of the proposed hardware
architecture is a typical equalization problem [Anguita, et al., 2003], charac-
terized by few training data (N = 32, 64, 128 were used), and where the non
linear effects of the channel are modeled as a FIR filter (see [Boni, et al., 2004]
for the details). The model defined in [Anguita, et al., 2003] was adopted, us-
ing a two-feature input vector x

(r)
i , and an output ui ∈ {+1,−1}. Input values

had a S/N ratio of 7 dB, so the signal was quite ’clean’ for this application.
After the initial training, about 6000 samples were used for the test and eval-
uation of the resulting SVM. Feature data were encoded as 16 bit fixed point
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Figure 1. The Virtex–II V2MB1000 development board.

numbers; in the CORDIC-based approach, only the most significant 12 bits
were used for the calculation and in the LUT, the same 12 bits were used to
select the appropriate entry of the 4096x16 bit table.

Of all the computation slices available in the Virtex II, only about 8% were
used for the CORDIC approach; also, 8% of the built-in multipliers available in
the Virtex II and 8% of its internal RAM blocks were used for the computation
of the inner products and the storage of intermediate values and constants, re-
spectively. The LUT approach apparently is much more thrifty, since only 5%
computational slices were needed and only 5% of the multipliers were used.
However, 40% of available internal RAM block were needed for storing of the
LUT itself. This leads to an unbalanced design, since the storage requirements
quickly use up all the available resources.

The second application is an HEP class of experiments for top/anti-top (tt̄)
quark couples detection; data is composed by a two-classes set of samples
organized as follows: a first half, used for training comes from the ’RUN I’
experiments at the Collider Detector at Fermilab (CDF), and the other class
comes from a simulation of the tt̄ generation event; a real time hardware that
was designed to fast tag the generation events and neglect the real-world back-
ground events [Amerio, et al., 2004]. Each sample is composed by r = 8 mea-
surements representing the main characteristics of the experiment. N = 4190
samples were used for the training, while the remaining 4000 samples were
used to measure the classification error. Once again, feature data was encoded
in 16 bit integers; both in the CORDIC and in the LUT approaches, the most
significant 14 bits were used in the calculation and for addressing the 16K x
16 bit LUT. In this case, the CORDIC approach required about 10% of the
available slices and 8% of the available multipliers, while the ROM blocks for
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internal storage consumed about 20% of the available resources. The LUT ap-
proach required about 6% of the computational slices, 5% of the multipliers
and a hefty 95% of the RAM blocks for the LUT.

4. Conclusion and discussion

In general, it was found that the approximation errors due to the use of a
LUT were well tolerated by the adaptability of the SVM tolerance to noise
and errors, so that their performance in terms of the classification error were
roughly comparable with those obtained by the CORDIC method: in the chan-
nel equalization application, the classification error was of he order of 4% for
both approaches, while for the HEP experiment classification error was of the
order of 24%. The main difference of the two approaches is in the speed at
which FPGA chip could be clocked: The simulation of the resulting architec-
tures on the FPGA indicated that for the CORDIC-based approach a maximum
clock rate of 60-70 MHz should be achievable, while for the LUT-based ap-
proach, a 90 MHz operation was possible. This is due Ű in part - to the more
complex CORDIC algorithm which requires more slices on the FPGA chip
and places them far apart, in turn causing the distribution of signals within the
FPGA chip to be routed along relatively long lines which cannot be switched
very fast. On the development board we used in our actual experiments on the
hardware, one can select between a 50 and a 100 MHz clock. The CORDIC so-
lution could only be run at the slower setting, while the LUT solution could run
at the maximum speed, confirming the results from the simulations. Classifi-
cation error percentage, speed performance, and slice occupancy for computa-
tional parts indicate the LUT-based solution as preferable. The main drawback
of that approach is the very high cost required to store the LUT itself, a cost
that is overwhelming in the HEP case study, where 95% of the resources are
used to store a 16KByte LUT. As pointed out earlier, the LUT approach seems
to be ’unbalanced’ in resource usage and this has lead to the investigation of
alternative approaches. Current efforts are directed toward an implementation
of the system that moves the LUT to external memory which is available on
the MEMEC development board. The internal RAM blocks of the Virtex II
FPGA will be used to create a cache memory that will store pertinent por-
tions of the LUT the support vectors xi, the products αiui (i ∈ SV ) that are
currently being used. This will add the complexity and the times required to
access the memory, but it will lead to a much more scalable design since larger
LUTs and more numerous support vectors can be accommodated. In addition,
investigations have been started to put the unused portion of the slices and the
multipliers to good use. The idea is to make multiple copies of the architec-
ture described above, so that several input data can be processed in parallel.
Given that all inputs (xn) in the forward phase will have to be processed by
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computing the kernels and the products ai ui, a common cache internal to the
FPGA should suffice. Further research and experimentation are needed to con-
firm the validity of this approach.
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Abstract The application of methods of statistical learning to the identification of the par-
tons from which hadronic jets originate is investigated using simulated jets in
the CDF detector with the ultimate objective of applying them at the trigger
level. Using only jet-related properties, it appears to be raltively easy to distin-
guish between jets originating from gluons and those originating from quarks in
an energy-independent manner. Distinguishing between quark flavours is more
difficult and will require inclusion of other variables.

Keywords: HEP, Parton Identification, Multi-Layer Perceptron

1. Introduction

With the exception of the recently discovered top (t) quark, partons frag-
ment into hadron showers immediately after production and what information
one can have concerning the partons must be deduced from the properties of
the corresponding hadron showers, which are measured by tracking devices
and calorimeters. Whereas the charge and the kinematical parameters can be
measured with reasonable accuracy, the nature of the parton is not easily de-
termined because all partons hadronize in a similar manner.

A method of parton identification (PID) would add useful information to
many analyses. For example, it would greatly facilitate the separation of the
top quark signal from the background because the top quark decays (because
of its great mass) into lighter quarks and leptons. A method of rejecting soft
gluon radiation would therefore be extremely useful. The ability to distinguish
between bottom (b) quarks and lighter quarks would be even more useful be-
cause t decay is distinguished by the production of a b quark. This is also the
situation for the separation of signals corresponding to a number of as yet un-
detected particles (e.g. the Higgs) which are at the focus of current and future
research.
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The work reported here focusses on discriminating between quarks and glu-
ons on the basis of the characteristics of the jets of particles into which they
immediately dissociate. By quarks (q) we mean all quarks produced in natu-
rally occuring proportions, which implies they are practically all light quarks.
However, it is our ambition to identify the heavier b quarks (b) Existing means
of identifying b’s depend principally on tracking.

On the basis of our previous work [Bianchin, 1992a]-[Badgett, 1992], we
begin by defining feature space in terms of a number of parameters which
depend on the energy distribution and the charge distribution around the jet
axis. We refer the reader to the above references for a detailed description of
these parameters.1

Briefly, they are:

nchar: both charged and neutral particles contribute to the jet energy
deposited in the calorimeter. nchar is the number of charged tracks in
the jet.

Pt02: the sum of transverse momenta of tracks contained in a the cone
closest (radius 0.2) to the jet axis.

Pt04: the sum of transverse momenta of tracks contained in a the conical
shell between 0.2 and 0.4.

Pt07: the sum of transverse momenta of tracks contained in a the conical
shell between 0.4 and 0.7.

EEMOM: a measure of the width of the jets transverse energy distribu-
tion in pseudorapidity η (which is a measure of the polar angle).

PPMOM: a measure of the width of the jets transverse energy distribu-
tion in azimuthal angle φ.

PTL: the transverse momentum Pt of the leading(i.e. the one with the
largest Pt) in the jet.

RADL: the distance from the jet axis of the leading particle.

The total jet transverse energy also features indirectly in the variables 2,3,4
and 7. These are divided by ETJ so as to reduce the classifier dependence on
the total transverse energy. Feature space is therefore defined by f1-f8 corre-
sponding, respectively, to: NCHAR, Pt02/ETJ , Pt04/ETJ , Pt07/ETJ ,
EEMOM , PPMOM , PTL/ETJ , and RADL. Collisions in the CDF de-
tector are simulated using successive monte carlo (MC) simulations. To begin

1The association of the acronym PID with parton identification is an extension of what is usually understood
by the acronym (i.e. particle identification).
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Figure 1. An illustration of how a jet is segmented to evaluate its features

with, physics generators [Sjostrand, 2001], [Corcella, 2000] simulate the col-
lisions. Based on current physics theories, the interactions between partons in
the colliding beams generate outgoing partons which are then hadronized. A
second MC then propagates the resulting particles through a detailed simula-
tion of the CDF detector. The simulated event data is then reduced using the
standard CDF production software and analyzed to extract our features f1-f8
for each of the two classes (e.g. quarks and gluons) which are tagged ac-
cordingly (e.g. +1 and -1, respectively). Data sample of 20000 jets each were
generated for each of three ETJ thresholds: ETJ > 20GeV (jet-20 samples),
ETJ > 50GeV (jet-50 samples) and ETJ > 90GeV (jet-90 samples)

The best possible discriminating power obtainable in our feature space is
determined using a Bayesian classifier. This also serves as a benchmark for
evaluating the performance of practical classifier algorithms such as multi-
layer perceptrons (MLP), support vector machines (SVM) [Cortes, 1995] and
the reactive tabu search (RTS), specifically designed for hardware application
[Battiti, 1994].
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Figure 2. The results of the Bayesian classifier for 20000 jets with ETJ > 20GeV (top two
inserts) and ETJ > 90GeV (bottom two inserts). Efficiency (vertical axis), as defined for the
MLP in the text, is plotted as a function of classifier threshold on the left hand side. Frequency
(vertical axis) is plotted agains Bayesian probability on the right

2. Classification

Discriminating power

Given a tagged data set obtains the best possible separation of the two com-
ponents simply by dividing up the feature space into progressively smaller cells
and calculating the Bayesian probability that an pattern which occupies that
cell is of one species or the other. The best a classifier can do is to reproduce
the Bayesian probability distribution. Given the inevitable limitation in statis-
tics, the results obtained by the Bayesian classifier depend on how one goes
about subdividing parameter space and on the minimum number of events re-
quired per cell.

The results of the Bayesian classifier for a tagged sample of 20000 jets (1/2
quarks and 1/2 gluons in each ) is shown in Fig. 2.
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Figure 3. MLP results with the qg − 20 data set. (a) shows how the MLP error function
for the training sample is reduced as a function of epoch number. (b) shows the corresponding
value of the error function for the test sample. Overlearning is seen to set in around epoch 380.
(c) and (d) show the MLP output distributions for each species of each sample.

The MLP

A MLP comprising 8 input nodes, 6 hidden nodes and 1 output node was
trained using the first 10000 jets of each data set. Conventional sigmoids were
used for transfer functions and a backpropagation algorithm for training. The
output error as a function of epoch (1 epoch corresponds to a cycle through
the entire data sample) for both training and test data samples is shown in the
upper inserts of fig. 3 for a jet 20 sample of undiscriminated quarks (i.e. mostly
light quarks). The output distributions for both training and test samples are
shown in the bottom two inserts of the same figure. These should be compared
to the results of the Bayesian classifier shown in fig. 2 (after transforming
the Bayesian classifier output range for (0,1) to (-1, +1)).The MLP is seen to
reproduce the results of the MLP within the differences due to limited statistics.

Three measures of the goodness of classification for the MLP are shown in
Fig. 3. Each is plotted as a function of a classification threshold value of
the MLP output above which quarks (gluons) are considered correctly (incor-
rectly) classified and below which quarks (gluons) are considered uncorrectly
classified. Quark efficiency is defined as q > /qtot, i.e. the number of quarks
above threshold as a fraction of the total number of quarks in the sample.
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Figure 4. a, b and c represent quark efficiency, background and total signal/background ratios
(see text for definitions). Each is plotted as a function of MLP output threshold

Gluon efficiency, on the other hand, is defined as g</gtot, i.e., the number
of gluons below threshold a a fraction of the total number of gluons. Total
efficiency is defined as (q> + g<) as a fraction of the total (qtot + gtot) number
of events.

Background fractions are calculated by substituting the number of incor-
rectly classified events for the correctly classified ones (i.e. g> for q> and q<

for g<) in the above expressions for efficiency. The signal to background ra-
tios are the ratios of correctly classified events to incorrectly classified ones,
i.e. q>/g> for quarks, g</q< and (q< + g>)/total. See Fig. 4.

Similar results are obtained for quark/gluon jets generated with higher lower
transverse energy bounds (qg − 50 and qg − 90). In each case the MLP easily
achieves the maximum possible discrimination efficiency as represented by the
Bayesian classifier.

SVM methods will not therefore be able to improve on classification effi-
ciency in this feature space. Preliminary results confirm this expectation. What
they will be able to do, is to furnish what is seriously lacking from the MLP,
i.e. a reliable estimate of the generalization error.

Any improvement in classification efficiency must come from a correspond-
ing improvement in the definition of the features used for classification. We
are currentlly working in this direction and preliminary results show that our
present simulated quark sample may be contaminated by final-state gluon ra-
diation. This is suggested by the hump in the quark distribution at lower (< 1)
output values. Preliminary SVM results support this hypothesis. Further im-
provement must be obtained by incrementing feature space.

Separating b-quarks from gluons and other quark flavours was also attempted
in the same feature space. It was found that b-quarks could more easily be sep-
arated from gluons at higher values of transverse energy (see Fig. 5) than was
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Figure 5. MLP output for b-quarks and gluon jets (bg-90)

expected while it was very difficult to distinguish between b-quarks and the
lighter species (see Fig. 6). It appears from these results that incrementing
feature space is essential. Inclusion of new tracking variables is being investi-
gated.

Figure 6. MLP output for b-quarks and light quark jets (bq-90)
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At the same time, work is in progress to implement the classifier on a
TOTEM VLSI system [Anzelotti, 1995] by means of the Reactive Tabu Search
(RTS) [Battiti, 1994] method. The TOTEM VLSI is a digital parallel processor
for fast learning and recognition with artificial neural networks in applications
where high recognition throuput is required. Results obtained using a Totem
neural processor farm will be presented.
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Abstract The liquid state machine is a novel computation paradigm based on the tran-
sient dynamics of recurrent neural circuitry. In this paper it is shown that this
systems can be used to recognize complex stimuli composed by non-periodic
signals and to classify them in a very short time. Even if the network is trained
over a segment of the signal the classification task is completed in a time in-
terval significantly shorter than the time-window used for the training. Stimuli
composed by many complex signals are recognized and classified even if some
signals are absent.

Keywords: Liquid State Machine, classification, Spiking Neurons

1. Introduction

Reaction times of biological systems are usually very short, so short that
there is not time to integrating or averaging over a long–time window; a stream
of input signals is usually processed in few m secs, a time interval that allows
to generate a small number of neural spikes. Neural microcircuits, small net-
works of spiking neurons, are usually identified as the new generation of neural
networks; the dynamic of this systems is complex and difficult to constrain and
manipulate so that one of the approach is to take a weighted sum of the activity
of the neurons using a suitable read-out circuit. In [Joshi and Maass., 2004]
this activity is defined as liquid state x(t) and models the impact that a neu-
ron of the circuit may have on the membrane potential of a generic read-out
neuron.

In [Maass and Natschlager, 2002] a new computational model, called the
Liquid State Machine (LSM), that exploits the liquid state as a resource for
a real time computing system was presented. The LSM is constituted by
two separated subsystems: the liquid, that is used to obtain a very complex
time-varying vector state, and the readout function: a memoryless subsystem
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(usually a simple perceptron or a set of neurons without connection loops) that
is used to extract information from the liquid. The LSM is capable to process
time-varying inputs without stable states, but using the perturbed state of the
liquid that, at any moment, is the result of the present and past inputs.

The plasticity of the microcircuits is not exploited in LSM, as said in [Joshi
and Maass., 2004], all the plasticity and adaptation is implemented in read-out
circuits trained to produce the desired output.

2. The Neuron Model

The liquid dynamics is an important issue or the implementation of the
LSM: the liquid should have two very important features:

1 a complex but not chaotic dynamics because virtually it should contain
the transition functions of many finite state machines;

2 the separation property that allows to separate the states due to two dif-
ferent input signals.

Both properties were introduced in [Maass and Natschlager, 2002]: while
the second one is clearly stated and defined, the first one is introduced when
the liquid fading memory and the need of dynamic synapses is discussed. The
dynamic of the liquid is also in relationship with the length of the neural con-
nections. To obtain this equilibrium between a complex dynamics and a not
chaotic response it is necessary to pay a special attention to the neuron model:
a rich model is needed to obtain a complex dynamics but a low computational
complexity is necessary for an efficient simulation.

On the two opposite sides are the simple Integrate & Fire model (I&F model)
and the Hodgkin-Huxley model: both of them used in LSM simulations [Maass
and Natschlager, 2002], [Kaminski and Wojcik, 2004]. The Hodgkin-Huxley
model is a complex model constituted by 4 differential equations and tens of
biophysically meaningful parameters, it is complete but very expensive to sim-
ulate and it is not a suitable choice especially if it is necessary to simulate a
large array of neurons as in a LSM.

In [Izhikevich, 2004] some of the models of spiking neurons are compared
in order to evaluate their applicability to a large-scale simulation. A simple
model capable to exhibit a very complex behavior is presented in [Izhikevich,
2003]. This model is simple to implement and, using only 4 parameters, is
capable to reproduce many firing patterns, as the bursting, continuous spiking
with frequency adaptation, and chattering. This model was used in our simu-
lation.
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Figure 1. A representation of the Liquid State Machine: on the left side the conversion sub-
system, one for each input signal connected to the liquid using 10 lines; on the right the readout
subsystem and the output lines.

3. The System Implementation

The liquid is a set of neurons organized in a three-dimensional structure,
in our implementation the liquid is made by a set of 25 × 10 × 4 neurons
connected using the same random pattern explained in [Maass and Natschlager,
2002]. The probability of a sinaptic connection from neuron a to neuron b
is defined by a Gaussian probability distribution with an average value of 4
(the smaller dimension of the structure of the liquid) and variance λ = 8 that
controls the average distance between neurons synaptically connected. The
weight of connections are randomly chosen with a mean value of we = 1 if the
connection is excitatory and wi = −2 if the connection is inhibitory and in a
way that 80% of the connections are excitatory and 20% inibitory, according
to [Izhikevich, 2003]. The four parameters of the neural model are randomly
varied in order to obtain different spiking patterns.

In our system a converter was added in order to bring a time function in
input to the liquid (see fig. 1). The time-varying inputs signals are converted
in impulse trains using the mechanism described in [Bothe et al., 2002] and a
set of ten Class 1 excitable neurons: values of the input waves are converted in
a set of 10 impulse trains that are applied to the liquid. Each converter uses 5
impulses to transform a single value of the input signal.

Each impulse train is connected to the liquid using the same connection
schema used to build the connections among the neurons in order to obtain an
activation area when an input impulse is present. This situation is represented
on the left of fig. 1 by the blurred circle areas on the surface of the liquid.

The output is constituted by the liquid state: the set of all membrane po-
tentials. The readout neurons are modeled as a set of perceptrons that take the
contributions of all the liquid neurons filtered with a membrane time constant
of 20 msec, the filter output is weighted and applied to a threshold to obtain a
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boolean response. Instead of this boolean output we will refer to the weighted
sum of membrane potentials.

4. The experimental setup

In this preliminary work we chose to focus on the recognition and classifi-
cation of input stimuli that approximate real-world signals. The classification
task is accomplished just after the stimulus is presented, not after the end of
a fixed time window or pre–defined number of samples. Moreover the system
is capable to recognize a stimulus composed by many signals even if just few
of them are presented. All the stimuli taken into account are constituted by
two or three time-varying signals that are non periodic, generated convolving a
Gaussian kernel with a set of random impulses. The first experiment is focused
to the recognition speed of stimuli composed by two signals and to highlight
that the status of the liquid can be maintained even if just a part of the stimulus
is presented. The second experiment is aimed to verify that the liquid is capa-
ble to recognize a complex stimulus from a part of it and to evaluate the output
to ambiguous stimulus.

First Experiment

The first task to accomplish is to recognize the two couples of input waves
(two stimuli), when presented to the liquid inputs. Two output perceptrons are
trained to recognize the input stimuli: the first perceptron is trained to recog-
nize the input stimulus x1 − y1, the second perceptron is trained to recognize
the input stimulus x2 − y2. After a successfully training of the output percep-
tron the liquid is capable to recognize the signal from just a part of them. To
do that the input is constituted by the couple x1− y1 during the first half of the
time interval (125 msec), and then switched to x2 − y2 during the second part
of the time interval. An example of the response of the liquid is plotted in fig.
2, the values plotted are the weighted sum of the states of the liquid using the
set of weights of the first perceptron. The average time needed to recognize the
signal is about 7 msec so that there is not time to complete the signal. The effi-
cacy of the classification task measured as the sum of the square classification
error is not a function of the distance of the two stimuli (measured, as defined
in [Maass and Natschlager, 2002], as the L2 norm of the difference of the two
couple of signals), results not shown here.

The next task is aimed to understand if the response of the liquid can be
maintained even if the input of the liquid is not complete. This is obtained
submitting to the liquid the couple x1 − y1 during the first half of the time
interval and x1 − 0 during the second interval. Fig. 3 shows that the input
in the second half of the time interval is difficult to recognize and the output
is oscillatory. The output of the system is above the threshold for some time
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Figure 2. (Upper left) the input sequence x1 − y1, x2 − y2; (lower left) output of the system
(weighted sum of the membrane potential of all neurons); (upper right) the input sequence
x2 − y2, x1 − y1; (lower right) the output signal

and then goes below the threshold after some oscillations. This is due to the
memory of the liquid that maintains for some time the effect of the last input.

The last task is constituted by the signal x2 − 0 for the first half of the time
window and x1 − y1 for the second half of the time window. In the first part
of the input the liquid maintains a response below the threshold, but the output
goes above the threshold when the next stimulus is recognized. The prece-
dent state of the liquid allow to obtain a response just above the recognition
threshold.

Second Experiment

In the second experiment the goal is to understand if the system is capable
to classify a stimulus if only a part of it is available or if two stimuli are very
similar.

The two stimuli are built using the five signals and labeled x1, y1, z1, x2, z2;
the two stimuli are constituted by the signal combinations x1 − y1 − z1, and
x2 − y1 − z2, where y1 is the common part. The output perceptron can be
successfully trained and the system correctly classify the two stimuli (results
not shown). Left side of fig. 4 shows what happens if the stimuli x1 − y1 − 0
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Figure 3. (Upper left) the input sequence x1 − y1, x1 − 0; (lower left)output of the system
(weighted sum of the membrane potential of all neurons); (upper right) the input sequence
x2 − 0, x1 − y1 (lower right) the output signal.

is presented to the system. The liquid maintains an output over the recognition
threshold even is the stimulus is not complete.

The right side of figure 4 shows what happens if the input is just the common
part of the input stimuli (the signal y1), the liquid state is oscillating between
two states corresponding to the two different input stimuli.

5. Conclusions and Future Works

Liquid State Machines are an interesting paradigm suitable or computing in
real time systems, and in this work it was demonstrated that LSM can be used
to classify time varying-signal. Although the tasks proposed are similar to a
real world situation were input signals are not periodic and need to be quickly
recognized even if not completed, it it necessary to understand what kind of
limitations the liquid has. Another problem is related to the readout system,
because many of the performances of the system depends on it.
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Figure 4. (Upper left) the composition of signals x1 − y1 − 0; (lower left) the output of the
liquid; (upper right) the input stimuli compose by 0 − y1 − 0;(lower right) the system output.
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Abstract: The goal of this project is to realize an enhanced data mining system which 
performs intelligent processing on data received from sensorial agents in a very 
flexible manner with reusability prospective. The project is implemented through 
a “digital core” constituted of a FPGA, a microcontroller and several memory 
blocks which co-operate to the computation. The FPGA is programmed in VHDL 
to implement the data mining process. The data mining system is composed of a 
sophisticated statistical non parametric part and a recurrent artificial neural 
network. The core was written in a recursive manner to permit the 
reconfigurability of the network and its reusability to all the systems which can 
be modeled through a similar system.

Keywords: data mining; fpga; neural network; Parzen method. 

1. Introduction

The target is a platform for fast data processing, which can be easily 
reused for other applications by changing only some parameters and 
reprogramming the FPGA. All other function for the control and the 
management of the data-path, external interfaces and control unit features 
will be done by the micro-processor. However, for performance reasons it 
might be necessary to perform some of these functions although by a FPGA. 
Since, the core of the system is adaptable, various sensors can be connected 
and different environment conditions can be analyzed. Concurring sensors 
will allow the system to collect and log a huge amount of data. This renders 
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it necessary to perform real-time advanced processing in order to structure 
and synthesize the information.

2. Algorithm description

The information embedded in environmental data is not just the sum of 
information coming out of each sensor but also correlations between data 
can be relevant for a specific target. For this purpose we developed a generic 
data mining processes that comprises the following principal phases: 

1. Characterizing sampling methods 
2. Focusing on a limited number of meaningful quantities 
3. Searching and organizing data links between the variables 
4. Clustering variables in separate classes. 
5. Analyzing cross-correlations between qualitative and quantitative 

variables.
6. Computing multivariate inferences on heterogeneous populations 

For the exploration and modeling of data suitable statistical methods 
have to be used. Among the available ones, a methodology to inference the 
distribution of data without any a-prior knowledge on the noise seems to be 
the best solution.

We chose a combination of a statistical non parametric algorithm and a 
neural network. For the statistical algorithm we use the Parzen method.

With the Parzen method cross correlation among the probability density 
functions of each parameter can be evaluated and groups of data in the 
database can be selected, which fit best to the current environmental data. 
These groups can then be used to evaluate the environmental conditions.

This analysis will also provide inferences that can be used for reliable 
short term forecasting (nowcasting) if the amount of available data is 
sufficient. As mentioned the Parzen method selects groups of data in the 
database, which fit best to the current environmental data. Therefore, this 
data can also be used to predict future evolution of the data in a short period. 
In our case the predicting part is realized through a recurrent neural network, 
considering the timing evolution of these parameters and the previous 
forecasts made by it. The neural network MLP (Multi Layer Perceptron) is 
implemented on a Xilinx FPGA with appropriate memory blocks. The 
memory is used to store the parameters of the neural network: weights, 
number of inputs, number of neurons and activation functions. 

Anyhow, it is necessary to have characteristic conditions and their 
evolution in the historical database in order to provide a reliable prevision. 
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Therefore, we provide also a synthetic database to the processing, which 
contains those conditions. 

3. Parzen method 

The neural system we use to nowcast the future environmental 
conditions must consider hundredths of thousands of data sampled and 
stored during last years. The reliability of the prediction is based on the 
highest quantity of data. The neural network uses this “knowledge” to 
estimate the trend of the interested parameters in the future. But it should be 
useless to train the network using the whole data set. This set must be 
analyzed to extract only the most significant information which can be used 
to forecasts. Our approach is based on a statistical non parametric method 
that we developed for this purpose. It must choose the best “predictors” for 
each parameter that must be predicted. We define the entropy of the 
parameters in the following way: 

In this formula p(x) is the Probability Density Function (PDF) of a 
random variable x. e(x) is an index of dispersion that lies in the range]-

,+ [. Let Z be the vector of all the possible predictors that can be used to 
foresee the variable y (predictand). Now let X1 and X2 be two particular 
subsets of predictors taken from Z. The number of elements in X1 and X2 
has to be the same. In order to establish the best set of predictors between 
X1 and X2 we calculated the following entropy difference: 

where p(X,y) is the joint PDF of X and y and p(X) is the PDF of X (the 
predictors). Both PDFs are unknown and therefore it’s impossible to 
evaluate the integrals in (2). We circumvented this problem by estimating 
the unknown PDFs through the Parzen method [E.Parzen,1962]. This 
method estimates the unknown probability density functions making a sum 
of Gauss kernels, each one centered on a record of the database. The 
formula is the following: 
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where,
D = X1, ……Xn : it’ s the data vector 
n: database dimension (number of records) 
xi,xij: these are the j-th component of X and Xi

: standard deviation vector, = ( 1,…., m)
Each standard deviation in regulates the resolution of the estimator 

along the corresponding dimension. In its turn this allows us to estimate 
d(X1,y) and d(X2,y). The best between X1 and X2 is the one that gives rise 
to the smallest entropy difference. The sets Xi are the same data of the 
database but delayed in time.

4. The neural system 

When the statistical procedure, described before, has chosen the best 
predictors an artificial neural network is requested to predict future values. 
Feed forward neural networks have been successfully used to solve 
problems that require the computation of a static function i.e. a function 
whose output depends only upon the current input, and not on any previous 
inputs. In the real world however, one encounters many problems which 
cannot be solved by learning a static function because the function being 
computed changes with each input received. Thus, any system that seeks to 
predict the future evolution of phenomena must have some notion of how 
the past inputs affect the processing of the present input, as well as a way of 
storing the past inputs. In other words such a system must have a memory of 
the past input and a way to use that memory to process the current input. 

 In order to take in account the time evolution of a generic environmental 
variable we chose the recurrent neural network architecture as shown in the 
following picture. 
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Figure 1. Neural System 

From the previous figure we can see that, for the forecast at the instant 
t+1, the network uses the previous network outputs, at the instant t, together 
with the inputs k1 and k2 chosen using the Parzen method. In particular we 
used a RNN [Pineda,1987] with three layers: 

Input layer 
Hidden layer ( 5 neurons) 
Output layer ( 1 neuron) 
We chose the backpropagation rule [P.Werbos,1974] to calculate de 

derivative of the cost function with respect to the weights and, consequently, 
to reduce the difference between the network output and the real value 
(target). For the optimization of the free parameters of the network 
(weights) we used the Levenberg – Marquardt algorithm 
[D.Marquardt,1963], that dynamically mixes Gauss – Newton and gradient 
descent iterations. 

5. Synthetic database 

In order to make the system at once working it’s necessary to have a 
large database with which training the neural system. And so when we use 
the system in a new place we have to wait a long time to collect the 
necessary data. To avoid this problem we have thought to create a synthetic 
database able to represent the meteorological characteristics of the place the 
system is installed in. For each place the following parameters are 
calculated:

Air temperature [°C] 
Relative humidity [%] 
Precipitation [mm] 
Atmospheric pressure [hPa] 
Solar radiation [W/m2]
Wind velocity and direction [m/s], [°N] 
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The sampling is hourly. First solar radiation is simulated; for this 
purpose it’s necessary to know the altitude and longitude of the place. Other 
additional parameters are used. Starting from the monthly global radiation 
values, first the daily values than the hourly values [Graham,1990] are 
generated stochastically using Markov transition matrices [Aguiar,1988]. 

Then the other parameters, e.g. temperature, humidity, wind are derived 
from these. In this algorithm information on local effects is considered as 
shown in the following figure. In this way the system can run at once using 
this synthetic database and can append to it the new acquired data. 

Figure 2. Features for different terrain types 

6. System overview 

However, the statistical algorithm is complex and therefore slow. The 
most promising solution for this problem is to use parallel processing which 
cannot be performed by a simple microcontroller, but can be implemented 
very efficient in an FPGA [Omondi,2002],[Bade,1994].

In a first step we evaluated the algorithm for performance using 
simulation on a standard PC. This simulation has been done using Matlab, 
because it provides proper libraries for statistical processing.

We implemented for this purpose the sensor interfacing on an 8 bit 
microcontroller, which transfers the measured data to a PC. The PC 
performs then the data processing (which will be done later on by the 
FPGA), and returns the result of the analysis (in our case a prevision of the 
future values of the parameters) backwards to the microcontroller in order to 
display both the measured values and the analysis result on a display. 
Currently we are working on implementing the algorithm on the FPGA. 
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Figure 3. System connected to a PC 

A hardware realization on an FPGA seems to be best suited to build that 
highly parallel distributed computing system. However, the operating modes 
management and the interface management to the sensors and the display 
will still be implemented with the microcontroller, because it allows for 
faster modifications.

In contrast, the Parzen method and the neural network require a lot of 
computation, which can be performed by parallel processing, which is the 
domain of FPGAs. Therefore, we evaluated a modular structure of the 
statistical processing with respect to the paradigm of parallel processing. We 
establish for this purpose locally distributed processing 

Figure 4. System connected to a FPGA 

units and a single control unit. These processing units are implemented on 
the FPGA (using a high-level description language like VHDL up to the 
FPGA synthesis). During the final design of the building blocks 
performance for speed and power consumption has to be further studied and 
optimized.
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7. Conclusion 

The relevance of the project is most of all in the flexibility of the 
implemented architecture. In fact this architecture is suitable for every data 
driven application. The simulation at the PC of the performance of the 
system is just well promising. The replacement of the PC with the FPGA 
will provide both an interesting saving of cost and space and an enormous 
gain in velocity. The only limit is due to the limited amount of memory 
available for storage of the synthetic and historical data.
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Abstract High Energy Physics (HEP) experiments require discrimination of a few inter-
esting events among a huge number of background events generated during an
experiment. Hierarchical triggering hardware architectures are needed to per-
form this tasks in real-time. In this paper three neural network models are stud-
ied as possible candidate for such systems. A modified Multi-Layer Perceptron
(MLP) architecture and a EαNet architecture are compared against a traditional
MLP. Test error below 25% is archived by all architectures in two different simu-
lation strategies. EαNet performance are 1 to 2% better on test error with respect
to the other two architectures using the smaller network topology. The design of
a digital implementation of the proposed neural network is also outlined.

Keywords: Neural Networks, Intelligent Data Analysis, Embedded Neural Networks.

1. Introduction

High Energy Physics (HEP) experiments generate huge amounts of data that
require classification and event discrimination. As example, a run on the Col-
lider Detector at Fermilab generates a dataset of events characterized by the
generation of top/anti-top quark couples.
The top/anti-top quark couples was discovered at the Fermilab Tevatron in
1995. This was either the culmination of the nearly two decades of intense
research at particle accelerators around the world, or the major triumph for
the Standard Model of particle physics since it predicted the top quark exis-
tence. In HEP experiments, along with interesting events, background noise is
generated by the collision, which occurs in a very small time lapse. Different
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backgrounds have very different kinematic properties, so HEP data classifica-
tion is a very complex tasks.
Neural networks have been applied in HEP experiments as function approx-
imators to obtain a functional form which describes some distribution [Beri
et al., 2000], [Bhat and Bhat, 2000], or for event classification, combining
information from different variables [Hays and Kotwal, 2002], [Tuttle et al.,
2001], [Ciobanu et al., 1999]. On the other hand, neural based high speed
triggering devices, normally organized in a hierarchy, are then required to dis-
criminate useful data from background noise [Fent et al., 1996], [Janauschek
et al., 1999].
The research described in this paper is aimed at developing a neural architec-
ture capable of real-time processing of these massive amounts of data. The
paper will be articulated in two separate parts. In the first part, the analysis
of the reference application domain as well as the issues related to the neural
models testing and selection are addressed. In the second part of the paper, the
digital design, for FPGA implementation of the neural architectures developed
in the previous part is outlined.

2. Background

Notoriously, data sets used in typical neural network applications are char-
acterized by large cardinality and unknown statistical distribution. There is
in fact no guarantee that input-output pairs be statistically significant when
considered under neural network testing, which makes the traditional test-set
validation procedure potentially incorrect.
The authors have previously introduced three "quality factors" to give a mea-
sure, without using the test set, of the generalization capability of a feed-
forward neural network. Based on the properties of these quality indexes, the
E-αNet architecture has been developed and successfully employed in several
application contexts [Gaglio et al., 2000], [Pilato et al., 2001].
In other application arenas, the authors have developed a simulation environ-
ment for a Multi-Layer Perceptron (MLP) design showing large performance
ratings in terms of both recognition rate and classification speed. This design
uses sinusoidal shaped activation functions for hidden layer neurons and linear
functions for output layer neurons. Successful applications of the design have
been reported in the area of handwritten character recognition [Sorbello et al.,
1999] and road sign recognition [Vitabile et al., 2002], [Vitabile et al., 2004].
In what follows, a brief description of both E-αNet architecture and the "sinu-
soidal" MLP is reported.
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Figure 1. The XOR problem: separation boundary of the two classes obtained using the
sinusoidal function.

The EαNet Neural Network

The EαNet is a feed forward neural architecture capable to learn the activa-
tion function of its hidden units during the training phase. These networks are
characterized by low quality factors when compared to traditional feed-forward
networks with sigmoidal activation functions. Network learning capability has
been obtained through the combination of Powell modified Conjugate Gradi-
ent Descent (CGD) [Powell, 1968] and the Hermite regression formula. Hid-
den layer activation functions are based on the first R Hermite orthonormal
functions where R is a priori chosen before the learning process.

The "sinusoidal" Multi-Layer Perceptron

In the classification task, the choice of the activation functions for the hid-
den and the output layers has an important role. The Multi-Layer Perceptron
(MLP) architecture employed in this research uses sinusoidal activation func-
tion for the hidden layer. This choice guarantees a better separation of classes,
with a small number of hidden units as illustrated for the XOR problem in Fig-
ure 1. At the output layer, a linear activation function is used as it improves
both learning speed and the recognition rate when compared with sigmoidal
function [Sorbello et al., 1999]. Powell modified Conjugate Gradient Descent
(CGD) [Powell, 1968] is also used as learning strategy.

3. Experimental Results

A data-set generated from a MonteCarlo simulation is used for the defini-
tion of a system capable of detecting specific events, discriminating them from
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the backgrounds events. More precisely, the sought events are related to the
production of a top/anti-top quark couple. The original synthetic data-set is
composed by a series of 11448 background events, and a total of 4213 top
events. Each event is characterized by eight features and a label specifying the
class of the event.
Starting from the original data sets, a balanced data-set is created to contain an
equal number of top and background events, for a total of 8380 patterns.

Simulation strategies and data pre-processing

Several neural network architectures have been tested and their performances
evaluated using the following strategies:

10-fold cross validation strategy: ten balanced data sets are generated
each with 838 patterns (419 background patterns and 419 quark pat-
terns). Ten different training/testing sessions were run, using 9 sets for
training and one set for testing.

2-fold cross validation strategy: two balanced data sets are generated
each with 4190 patterns (2095 background patterns and 2095 quark pat-
terns). Two different training/testing sessions were run, using 1 sets for
training and one for testing.

In addition, each generated training set was normalized using the following
formula:

z =
x− μ

σ
(1)

where z is the new normalized value, x is the original value, μ is the training
set mean value and σ is the training set standard deviation.
The corresponding test sets were normalized similarly using the μ and σ values
of the corresponding training set.
The overall training and test error is calculated as the average value across all
train and test sessions, respectively.

Simulation results

Several simulations were executed to compare the performance of the fol-
lowing neural architectures:

a traditional MLP with a sigmoidal activation function in both hidden
and output layers;

a sinusoidal MLP with sinusoidal activation function in the hidden layer,
and linear activation function in the output layer;

a EαNet architecture;
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Table 1. Neural networks architecture results with the 10-fold strategy.

Neural Architecture Topology Training Error (%) Test Error (%)

Traditional MLP 8-30-2 22.68 23.48
Sinusoidal MLP 8-25-2 22.82 23.27
EαNet 8-20-2 18.61 22.32

Table 2. Neural networks architecture results with the 2-fold strategy.

Neural Architecture Topology Training Error (%) Test Error (%)

Traditional MLP 8-30-2 19.47 24.89
Sinusoidal MLP 8-25-2 20.53 24.15
EαNet 8-20-2 17.76 22.43

In Table 1 and in Table 2 are reported the obtained results for the 10-fold and
2-fold strategy, respectively.

4. Digital Implementation of a feed-forward neural
network

The digital MLP design was developed and tested using an algorithmic-like
hardware programming language: the Handel-C language. Handel-C allows
structure design description, how it is decomposed into sub-designs, and how
those sub-designs are interconnected. Secondly, design description is done us-
ing a familiar programming language form (Handel-C uses an ANSI C similar
syntax with the addition of inherent parallelism). Thirdly, being described us-
ing an hardware description language, a digital design can be simulated before
being manufactured, so that designers can quickly compare alternatives and
test for correctness without the delay and expense of hardware devices. Fi-
nally, the output from Handel-C is a file that is used to create the configuration
data for FPGAs, allowing digital design implementation on these logic pro-
grammable devices.
The architectural design aims to the best compromise between several con-
straints, such as high modularity of design, high density of neurons on device,
high recognition rate and speed. Taking these constraints into account (i) data
input acts in a serial way; (ii) data processing acts in parallel among the neu-
rons and serially within each neuron; (iii) second layer processing is pipelined
with first layer processing.
The proposed architecture is composed of two layers of neurons and is shown
in Figure 2 . The Winners Take All (WTA) circuit selects, among a set of m
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Figure 2. Functional scheme of the whole digital architecture. The n and m values was fixed
to 20 and 2, respectively.

numbers of p bits, the two greatest activation level units. The time required to
perform the selection does not depend on m and varies linearly with 2 ∗ p. If
the classification is weak (i.e. the difference between the winning and the sec-
ond classified unit is less than a prefixed threshold), a rejection circuit rejects
the item to guarantee a better classification rate.
First experimental trials have shown that network performance and area usage
on FPGA are optimized when using sinusoidal activation function. Exploiting
its periodicity, the activation function is implemented at each neuron with a
small look-up table and a small accumulator, with no carry bit.

5. Conclusions

Three neural architectures have been evaluated in this paper for HEP exper-
iments. Architecture generalization capability was tested using a data-set gen-
erated from a Montecarlo simulation. As pointed out in several papers, HEP
data classification is a very complex tasks since different background events
can have very different kinematic properties. Simulation results prove that the
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EαNet architecture shows a better behavior with a smaller hidden layer on both
10-fold and 2-fold strategies. Future works will be aimed to implementation
and testing of neural architectures on FPGA devices.
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Abstract In this paper we propose the adoption of the Random Neural Network Model
for the solution of the dynamic version of the Steiner Tree Problem in Networks
(SPN). The Random Neural Network (RNN) is adopted as a heuristic capable
of improving solutions achieved by previously proposed dynamic algorithms.
We adapt the RNN model in order to map the network characteristics during
a multicast transmission. The proposed methodology is validated by means of
extensive experiments.

Keywords: Dynamic Multicasting, Random Neural Network Model

Introduction

Multimedia networking applications such as distance education, remote col-
laboration, video-on-demand services and teleconferencing will become wide-
spread, relying on the ability of the network to provide multicast services ef-
fectively and efficiently. The multicast transmission refers to the capability
of sending the same data towards multiple destinations. A distribution tree
connecting source and destinations must be selected on the graph, which rep-
resents the network topology. Two different criteria can be adopted for the
optimization of the multicast tree. The first exploits the concept of the shortest
path and it is known as "shortest path tree". The shortest path [Dijkstra, 1959]
can be defined as the "minimum cost path" that connects two hosts in the net-
work. Another criterion of optimization consists of minimizing the cost of the
overall tree. This is equivalent to find the optimal Steiner Tree and it is univer-
sally referred as the Steiner Tree Problem in Networks (SPN). This problem
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has been proved to be NP-Complete in its decisional version. However, there
exist several heuristics [Winter, 1987] that allow to determine sub-optimal so-
lutions in polynomial time. The literature presents, also, some post-processing
techniques [Di Fatta and Lo Re, 1999], which are capable of improving previ-
ously determined solutions. A further classification of the multicast problem
consists of the following two categories: static multicast problem, in which
the destination subset is fixed, and the best Steiner tree has to be determined;
dynamic multicast problem, in which the destination subset can dynamically
change because of join or delete requests. In this paper, we deal with the Dy-
namic Multicast and we try to minimize the spanning tree cost during the over-
all session. We present the "Real Time Random Neural Network" (RTRNN)
heuristic, a post-processing technique, which improves multicast trees in the
dynamic case. It is based on the Random Neural Network (RNN) [Gelenbe,
1989], which its authors successfully applied to the static case of the SPN [Ge-
lenbe et al., 1997]. RNNs find their applications in many NP-complete prob-
lems, such as the Traveling Salesman Problem [Gelenbe et al., 1993], func-
tion approximations [Gelenbe et al., 1999], cognitive packet networks [Kokak
et al., 2003], etc., and their good capability of reinforcement learning has been
demonstrated [Kokak et al., 2003].
In this paper, we show that the Random Neural Network model is applicable
to the dynamic multicast problem, and we compare RTRNN with three well
known dynamic heuristics: Greedy Heuristic (GH) [Waxman, 1988], Weighted
Greedy Heuristic (WGH) [Waxman, 1988], and Virtual Trunk Dynamic Multi-
cast (VTDM) [Lin and Lai, 1998]. The remainder of this paper is structured as
follows: in the next section we introduce the Random Neural Network model,
and in section 2 we describe the application of the RNN to the dynamic multi-
cast problem. Section 3 is devoted to the experimental results.

1. The Random Neural Network Model

In the Random Neural Network model neurons are characterized by a state
or potential k such that ki ≥ 0, ∀i ∈ S, where S represents the set of neurons
that constitute the network. The neuron potential depends on the potentials of
other neurons through the exchange of spikes. Spikes are unitary amplitude
signals that have the effect of increasing or decreasing the potentials of neurons
in which they arrive. Spikes can be classified as: excitatory spikes represented
by +1, and inhibitory spikes represented by−1. Excitatory spikes increase the
potential of the target neurons, activating them, if disabled. Inhibitory spikes
decrease the potential of their target neurons; null potential means that neuron
is disabled, and an inhibitory spike does not produce any effect. A neuron with
positive potential can randomly fire either excitatory or inhibitory spikes. The
interfering rate ri, for sending signals to other neurons or outside the network,
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is exponentially distributed. When the neuron i fires, the spike will arrive at
neuron j with a probability p+

ij if the spike is excitatory, and with a probability
p−ij if the spike is inhibitory. Furthermore, a neuron i can fire spikes outside
the network with a probability di. The probability assignment is constrained
by the following equation:

di +
∑

j

[p+
ij + p−ij ] = 1 (1)

We define the rate, at which neuron i sends excitatory spikes to the neuron j,
as w+

ij = rip
+
ij , and the rate, at which the neuron i sends inhibitory spikes to

the neuron j, as w−
ij = rip

−
ij . The following two parameters describe the RNN

model:
p(k, t) = Pr[K(t) = K], qi(t) = Pr[ki(t) > 0] (2)

where K(t) = (k1(t), k2(t), . . . , kn(t)) represents the vector of the network
state, and k is a fixed value of the network potential. Equations 2 represent,
respectively, the distribution of probability of the network state and the mar-
ginal probability that neuron i is excited at t instant. In our heuristic we adopt
the last parameter to select the neuron which is a potential Steiner vertex can-
didate. The time-dependent behavior of the model is represented by an infinite
system of Chapman-Kolmogorov equations for discrete state space and con-
tinuous Markovian systems. Let t fixed, the stationary probability distribution
associated with the model is the quantity produced in the following equations:

p(K) = lim
t→∞Prob[K(t) = K], qi = lim

t→∞Pr[ki(t) > 0] (3)

If the neuron i is stable[4], the qi quantity is given by:

qi =
λ+

i

ri + λ−
i

(4)

where λ+
i and λ−

i represent respectively the excitatory spikes and the inhibitory
spikes that neuron i receives from others neurons and from outside the network.
Their formalization is shown in the following equations:

λ+
i =

n∑
j=1

qjrjp
+
ji + Λi , λ−

i =
n∑

j=1

qjrjp
−
ji + λi (5)

where Λi is the rate of exogenous excitatory signals that arrive at neuron i, λi

represents the rate of inhibitory spikes that neuron i receives from outside the
network. Both Λi and λi arrive at neuron i with a rate that satisfies the Poisson
distribution with average value 1/ri.
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2. Random Neural Networks for dynamic SPN

The Steiner Tree Problem can be defined as the one of finding the minimum
cost tree, which spans the nodes belonging to a given subset of all the graph
nodes. It can be considered as a problem of optimum interconnection, within
the scope of an assigned topology. The dynamic version of the multicast prob-
lem consists of finding a sequence of optimal trees, after the execution of a
sequence of operations representing node insertions or deletions. Operations
are coded in a two component-vector (node, action) that represents the his-
tory of multicast session. The problem of updating a multicast tree after each
insertion or deletion during the same session is known as “The on-line multi-
cast problem". In this paper we assume that each session starts with the source
node only. Starting from a sequence representing the multicast session in the
form (n, a) where n ∈ V is a node belonging to the network and a ∈ {0,1} is
the action such as insertion or deletion, the On-Line Multicast Problem can be
defined as follows:
Given:

1 An indirect, connected graph G = (V, E, c) where E is a set of edges
and c : E → R+ is a weight function mapping edges in R+, the "weight"
can be defined as the cost of the link,

2 A set of multicast nodes Z ⊆ V ,

3 A vector of requests R = {r1, r2, . . . , rn} where ri ∈ R is a pair
(ni, ai).

4 A multicast tree T (V ′, E′) where V ′ ⊆ V and E′ ⊆ E.

Find: The sequence of trees T1, T2, . . . , Tm such that nodes-member of each
tree Ti are obtained from T modified by requests r1, r2, . . . , rm, and their cost
(sum of weights of edges) is minimum between all the possible combinations
of Ti.

The goal of our algorithm is the efficient updating of a multicast tree after
each real time insertion or deletion of other multicast nodes. In order to apply
the RNN to dynamic multicast, we associate a physical meaning to the involved
variables. A mapping of a computer network on a RNN can be carried out as
follows:

1 a neuron represents a node of the real network;

2 the weight of the edge connecting neurons i and j depends on the rate
used by neuron i to send excitatory spikes to neuron j and it is calculated,
as in [5], according to the following equations:
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w+
ij =

A′

Aij
if Aij 	=∞, w−

ij = 0 if Aij =∞ (6)

where A′ is the network link average cost, Aij is the cost of link con-
necting node i to node j. If Aij = ∞, the link < i, j > does not exist.
Therefore, since w+

ij is inversely proportional to the cost of the link, it
may be viewed as the link capability of transporting multicast packets;

3 parameter w−
ij may be simply viewed as a flag indicating the existence

in the network of a link connecting node i to node j. Consequently, w−
ij

is computed as follows:

w−
ij = 0 if Aij 	=∞, w−

ij = 1 if Aij =∞ (7)

4 the ki potential of the i neuron is constant: this means that the random
neural network is analyzed in steady state;

5 the marginal probability distribution qi may be associated to the good-
ness of neuron i to be a potential Steiner vertex candidate, and it is cal-
culated according to:

qi =

∑
j

qj · w+
ij + Λi

ri +
∑
j

qj · w−
ij + λi

=
pckts entering neuron i

pckts unreachable neuron i
(8)

From the equation 8 it emerges that with a fixed numerator, the probability
that neuron i will be chosen as potential Steiner vertex candidate is inversely
proportional to the the number of multicast packets that do not enter the i
neuron. The qi value depends on the current tree topology. If a neuron is
a multicast node, it must receive all multicast packets and therefore qi = 1,
which, according to [Gelenbe, 1989], means neuron instability.
Let X be the set of Steiner vertices of T , Z the set of multicast nodes, and Y the
set of vertices used for the neural network configuration, the algorithm works
as follows: initially, it builds a tree using one of the existing heuristics (Greedy
Heuristic, Weighted Greedy Heuristic or Virtual Trunk Dynamic Multicast);
then, RTRNN is applied and, if during its execution, an insertion request is
received by node i, (meaning that node i must receive all multicast packets)
qi is set to 1. Afterwards node i will be inserted into the Y set; RTRNN
will take this into account at the next iteration, and it will find a new tree
called TRNNtemp, which will become the updated tree after the request will be
satisfied. In order to calculate TRNNtemp, a further temporary tree, TNEW is
created, primarily, to connect the i node to the tree, by means of the shortest
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path between them; then all qj s.t. j /∈ Y are calculated, in order to choose the
neuron k corresponding to the largest qk. Such a node will be appended to Y as
best Steiner vertex candidate. If during the RTRNN execution a disconnect
request is received by the node j, it will be labeled as “not for Z", the tree will
be pruned and, if node j is not a leaf node, node j will be labeled as Steiner
vertex. Afterwards, node j will be deleted from the Y set, and qj will be set
to 0 in order to compute all qk s.t. k /∈ Y and to choose the neuron s with the
largest qs. At the end of requests RTRNN is guaranteed to find a tree better
than the one found by the basic heuristic.

3. Experimental results

In order to validate our algorithm, simulations are carried out in which it
is supposed that sessions begin just with the source node; afterwards, sessions
continue with the insertion or the deletion of the nodes that request either to
join or to leave the multicast group. For our simulations, a set of requests
equal to the 20% of the number network’s nodes is generated. Furthermore,
whenever the cost of the tree exceeds a fixed bound, an experimental measure
to compare the three heuristics with their improved-version is carried out. In
the dynamic case, because we did not know the optimal costs, we compare
the costs achieved by the RTRNN with the costs obtained by the Stirring algo-
rithm [Di Fatta and Lo Re, 1999].
The cumulative cost competitiveness graphs for both Steinlib [Voss et al., ]
and BRITE networks [Medina et al., ], are shown in figures 1 and 2. The
Steinlib graphs represent a well known testbed in the literature, whilst BRITE
networks are internet like graphs. The competitiveness, shown in the charts,
represents the ratio between the cost produced by the heuristic and the optimal
cost. By optimal cost we mean the real best solution for the static case and
the best found solution for the dynamic case. Figure 1 shows the relevant im-
provement produced by RTRNN when applied to GH , WGH and V TDM .
Both GH +RTRNN and WGH +RTRNN find always a Steiner tree such
that CHeur/COpt ≤ 1.105.
Figure 2 shows that RTRNN applied to BRITE networks outperforms the
behavior obtained on Steinlib graphs; the GH + RTRNN curve converges
at 100% for competitiveness values not much greater than 1.08. Likewise,
RTRNN is able to improve considerably in real time the sequence of multi-
cast trees found by V TDM .

Figure 2 also shows that RTRNN obtains a better improvement when ap-
plied to WGH . Finally, although WGH presents a behavior worse than GH
on Internet-like networks, RTRNN+WGH has a better behavior than RTRNN+
GH . RTRNN , therefore, improves WGH more than GH , and finds multicast
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Figure 1. Cumulative Competitiveness for Steinlib Networks.

Figure 2. Cumulative Competitiveness for BRITE Networks.

trees with cost distant from the optimum less than 8%. Another RTRNN fea-
ture is due to the limited tree topology changes involved after each operation.
This constitutes an advantage because a limited re-routing of packets is re-
quired. Namely, the tree topology changes, on average, after each operation
are limited between 1.5% and 3.5%, satisfying the constraint imposed by dy-
namic multicasting.



164

4. Conclusions

In this paper we proposed a dynamic heuristic for the SPN capable of im-
proving the partial solutions obtained in real time. The proposed heuristic is
based on the adoption of the Random Neural Network Model for the solution
of the dynamic version of the Steiner Tree Problem in Networks. RTRNN
heuristic has been tested on sets of sample graphs artificially generated and we
demonstrated that it is an efficient dynamic post-processing method able also
to satisfy the constraints imposed by dynamic multicasting, as the real time
dynamic and the limited re-routing of multicast packets.
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Abstract We present a package for R language containing a set of tools for regression
using ensembles of learning machines and for time series forecasting. The pack-
age contains implementations of Bagging and Adaboost for regression, and al-
gorithms for computing mutual information, autocorrelation and false nearest
neighbors.

Keywords: R package, statistical computing, time series, Bagging, Adaboost, Takens-Mane
theorem, mutual information, autocorrelation, false nearest neighbors.

Introduction

R [Ihaka and Gentleman, 1996] is a programming language and environ-
ment for statistical computing similar to the S language and environment which
was developed at Bell Laboratories [Becker, 1984; Venables and Ripley, 2002].
It is an interpreted language, providing a large set of tools optimized for a very
wide range of problems. It is based on objects such as vectors, matrices, and
more complex structures (data frames, lists). There are many operators acting
directly on these objects, which make any computation fast and expressed in a
straightforward way. These properties, its GNU license 1 and a generic resem-
blance to Matlab (which shares with R the presence of matrices and vectors as
native objects), have boosted its diffusion in the statistical and machine learn-
ing communities.

Among the available tools there are also packages for multilayer percep-
trons, for support vector machines, for multivariate optimization. Moreover,
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the language features all standard programming constructs (conditional in-
structions, loops) and a very handy 2D and 3D graphics drawing capability.

Being an interpreted language, interactive development and use of programs
is possible. The peculiar conventions adopted make it a straightforward task,
since they allow even very complicated constructs to be expressed compactly.
However, there is the drawback of low speed. Although the tools have been
optimized, each statement still has to be interpreted. For instance, executing
108 trivial cycles in C requires about fifty times less than the corresponding R
code. Therefore, it is possible to call external C, C++, or Fortran routines from
within an R program. This is useful when parts of the code are computation-
intensive and difficult to optimize in R. Moreover, recently a R to C compiler
has been released (see http://hipersoft.cs.rice.edu/rcc/).

In this paper we present an overview of a ERAF, an R package containing a
set of algorithms implementing Ensembles for Regression and for time series
Analysis and Forecasting we have implemented 2.

In next section we illustrate some learning machines and some ensemble
methods that that can be used in regression tasks. In Sect. 2 we show a set
of procedures for time series analysis that permit to transform a forecasting
problem in a regression problem.In Sect. 3 we present an experimental test
case. Conclusions are in Sect. 4.

1. Ensembles for regression

Base learners and ensembles

In R many learning machines (base learners) are available as components of
standard packages, including:

Multilayer perceptrons (MLP) are implemented in R through the func-
tion nnet of the package nnet contributed by Venables and Ripley [Rip-
ley, 1996; Venables and Ripley, 2002]. The following parameters can be
set: type of architecture (multilayer or single layer perceptron), number
of hidden layer units nnhl, decay parameter λ for weight decay, stopping
criterion (on cost threshold and/or on maximum number of iterations);
initialization values for weights, and activation function for output units.

Support vector machines (SVM) [Cortes and Vapnik, 1995] are imple-
mented in R through the function svm of package e1071. The
implementation is the porting of Chang and Lin code [Chang and Lin,
2001; Chang and Lin, 2002]. The adjustable parameters are: kernel type
(linear, polynomial, Gaussian), kernel parameters (γ for Gaussian ker-
nel, p and b0 for polynomial kernel), regularization parameter C, and ε
in Vapnik’s loss function.
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Due the large number of parameters to be set in both nnet and svm, we
included in ERAF package two meta-learners allowing the user to to evaluate
the test set error (root mean square), while scanning the parameters, in order to
speeding-up the model selection procedure.

The generalization of a learning machine (or base learner) using a finite data
set has been studied in the frameworks of the notions of margin [Vapnik, 1998]
and of classical bias-variance decomposition of the error [Geman et al., 1992],
that recently have been shown to be equivalent [Domingos, 2000].

Ensemble methods [Valentini and Masulli, 2002] aggregate the output of
many base learners and can increase generalization on the same data set, as
they can boost margins, reduce variance, and also bias. The overall effective-
ness of a learning machine depends on the specific characteristics of the base
learners (more details are, e.g., in [Valentini and Dietterich, 2003]).

In ERAF package we implemented the Bagging [Breiman, 1996] and the
Adaboost [Freund and Schapire, 1996] algorithms that are two powerful en-
semble methods based on data set re-sampling that have been extensively stud-
ied in classification task. The implementations we have enclosed in ERAF
package are tailored for regression tasks.

Bagging

Bagging (Bootstrap AGGregatING) [Breiman, 1996] makes a bootstrapping
on a dataset consisting in creating new data sets by sampling with replacement
from the original data, with equal probabilities for each data item. The basic
algorithm creates a model for each new data set and then combining the dif-
ferent estimations thus obtained, by an averaging operation. More formally,
starting from the original dataset L = {(x1, y1), · · · , (xl, yl)} we build p new
training sets Lk with k = 1, · · · , p sampling from L with replacement. A
model fk(x,Lk) is identified from each new dataset, then the predictive model
is built as

f(x,L) =
1
p

p∑
i=1

fk(x,Lk) (1)

Adaboost

Adaboost [Freund and Schapire, 1996] stands for ADAptive BOOSTing,
meaning that the procedure is adaptive with respect to the level of complexity
of the training set. The implemented algorithm for regression follows [Drucker,
1997].

The algorithm starts by assigning a probability p
(1)
i = 1/l to be sampled to

each of the l data items belonging to the set L = {(x1, y1), · · · , (xl, yl)}. A
training set L1 is generated by sampling with replacement from the original set
l(1) examples, and the first learner is trained. We obtain f (1) which gives the
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output ŷ
(1)
i for each xi ∈ L. Then we compute the loss L

(1)
i selectable among

the following:

L
(1)
i =

|ŷ(1)
i − yi|

D
; L

(1)
i =

(
|ŷ(1)

i − yi|
D

)2

; L
(1)
i = 1− e−

|ŷ(1)
i

−yi|
D

(2)
where D is a normalization constant such that Li ∈ [0, 1], i.e.,

D = max
i
|ŷ(1)

i − yi|. (3)

Then we compute L̄(1) =
∑l(1)

i=1 L
(1)
i p

(1)
i , i.e., the average of the L

(1)
i weighted

on p
(1)
i , and β(1) = L̄(1)

1−L̄(1) , a quantity whose value is inversely related to
the quality of learning as measured on L: Now the sampling probabilities are
updated as follows:

p
(1)
i = p

(1)
i

(
β(1)
)1−L

(1)
i

(4)

and of course they are normalized to 1. With this procedure we can assign
a larger sampling probability to the examples featuring the larger error. It is
iterated until a value of T is reached such that L̄(T ) is larger than 0.5 or a
selected number of iterations is reached.

The ensemble thus obtained yields a output on a given xi which is computed
as the median of the ŷ

(t)
i weighted with the corresponding β(t). (The median is

used to give robustness to the method.) We consider ŷ
(t)
i and the corresponding

β(t) of all T machines which took part to the procedure. They are renamed so
that ŷ

(1)
i < ŷ

(2)
i < · · · < ŷ

(T )
i , keeping intact the association between a ŷ

(t)
i

and β(t). Then log 1
β(t) is summed over t until

∑
t

log
1

β(t)
≥ 1

2

∑
t

log
1

β(t)
(5)

If t∗ is the minimum value of t such that (5) holds, the output ŷi is that made
by machine t∗, that is, ŷi = ŷ

(t∗)
i .

2. Time series analysis and forecasting

From forecasting to regression

The forecasting problem requires modeling an unknown system, which is
assumed to generate the observed time series. Given a time series of n ele-
ments (s1, s2, · · · , sn) obtained by sampling an observed variable of the sys-
tem, the Takens-Mane [Takens, 1981; Mane, 1981] theorem guarantees that its
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dynamics can be reconstructed in the space of vectors

yi = (si, si+T , · · · , si+(d−1)T ) (6)

T and d must be selected appropriately for the dynamics to be correctly recon-
structed. Therefore we have implemented the mutual information, autocorrela-
tion, and nearest neighbors algorithms[Abarbanel, 1996] as T can be estimated
as the the first minimum of mutual information or as the first zero crossing of
autocorrelation, and then we can estimate d using, e.g, false nearest neighbors
algorithm [Abarbanel, 1996]. ERAF package includes also two local learners
for forecasting, as proposed in [Abarbanel, 1996].

Mutual information

The algorithm for computing mutual information implements the following
formula [Abarbanel, 1996]:

I(T ) =
∑

si,si+T

P (si, si+T ) log2

(
P (si, si+T )

P (si)P (si+T )

)
(7)

The interval (a, b) is split into in k contiguous subintervals (typically hundreds)
A = (u, v) = Δ1 ∪Δ2 ∪Δ3 ∪ · · · ∪Δk, with Δ1 =

(
u, u + v−u

k

)
, and

Δj =
[
u + (j − 1)v−u

k , u + j v−u
k

)
, j = 2, · · · , k.

To obtaining P (si) we count how many si belong to each subinterval, then
divide by N . P (si) is therefore an object of type {Pi}i=1,k. To obtain the joint
probability we build a k × k matrix J . Element Ji,j counts how many pairs
(si, si+T ) are such that si ∈ Δi and si+T ∈ Δj i (this quantity is then divided
by the number of pairs N − 1). Therefore mutual information is computed as:

I(T ) =
k∑

i=1

k∑
j=1

Ji,j log2

(
Ji,j

PiPj

)
(8)

where the summation is limited to PiPj 	= 0.

Autocorrelation

The autocorrelation is defined as:

C(T ) =
∑

i

(si − s̄)(si+T − s̄) (9)

where s̄ = 1
N

∑N
i=1 si is the average of s [Abarbanel, 1996]. The algorithm is

written in C.
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False nearest neighbors

The false nearest neighbors algorithm [Abarbanel, 1996] allows us to esti-
mate the embedding dimension of dynamical system. After choosing T corre-
sponding to the first minimum of mutual information or to the first zero cross-
ing of autocorrelation, we consider an element y(k) = (sk, · · · , sk+(d−1)T )
and we search the vector yNN (k) = y(u) = (su, · · · , su+(d−1)T ) closest to
it. To assess whether the vectors y(k) and nearest neighbor yNN (k) are close
or far in passing from the current space to the space obtained by adding the
next coordinate, we check for one of the following two conditions [Abarbanel,
1996]:

|sk+dT − su+dT |√∑d
m=1 (s(k + (m− 1)T )− s(u− (m− 1)T ))2

> 15 (10)

|s(k + dT )− s(u + dT )|
1
N

∑N
k=1(s(k)− s̄)2

> 2 (11)

If one of them is fulfilled, we consider yNN (k) as a false neighbor of y(k)
We repeat the procedure for all vectors y(k) and compute the percentage of
false neighbors. The computation is made starting from d = 1 up to a selected
maximum value of d. The algorithm for searching the vector yNN (k) is writ-
ten in C and optimized following [Nene and Nayar, 1997] and is quite well
performing in terms of speed. Selection of T and data processing are made by
a procedure written in R.

3. Case study

In this section we present some results concerning the test of ensemble
methods on a time series forecasting problem. In particular we compare their
performance with those of base learners.
The time series chosen is the well known Lorenz [Abarbanel, 1996] chaotic
series obtained sampling the x variable, solution of this differential equations
system: ⎧⎨⎩

ẋ = σ(y − x)
ẏ = −xz + rx− y
ż = xy − bz

σ = 16
b = 4

r = 45.92
(12)

Using a short time sampling (e.g. τs = 10−2) the forecasting problem is
easy and all considered learning machines (MLP, SVM and their bagged and
boosted versions) obtained similar good generalization results. In this paper we
present an experiment where we strongly sub-sampled the series x (τs = 0.2)
obtaining the series of 1000 values shown in figure 1.
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Figure 1. (a) The Lorenz time series (b) False nearest neighbors vs embedding dimension

MLP SVM Bagging Bagging Adaboost Adaboost
MLP SVM MLP SVM

rmse 2.13 2.76 2.42 2.89 2.02 3.02

Table 1. Results on the Lorenz time series.

The problem was to forecast the last 200 values using the first 800 for train-
ing. We used the mutual information minimum to estimate the time lag be-
tween two sample to use in the construction of the time-delayed coordinates
vectors: we obtained T = 1. These vectors are used in the false nearest neigh-
bors algorithm to estimate the embedding dimension: we found d = 4.

Using this value of d we trained many MLP and SVM in order to find the
best set of parameters that leads to the minimum of the root mean square error
(rmse) on the test set. All the necessary software is made available by the the
EASY package.

Then we built ensemble methods with base learners with the best set of pa-
rameters. All the ensembles were made up by 100 base learners using training
sets of the same dimension of the original training set. The best set of para-
meters for this problem were γ = 5, C = 5 and ε = 0.005 for SVM using
Gaussian kernel and nnhl = 36 and λ = 0.1 for MLP (see Sect. 1). All the
results are shown in table 1. In figure 2 we can see the differences between the
regression lines for the best MLP and Adaboost with MLP.
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Figure 2. (a) Regression line for Adaboost with MLP (b) Regression line for MLP

4. Conclusions
The procedures contained in the ERAF package we have described in this

paper allow the R programmer to face regression and time series forecasting
problems using state of the art methods. In particular, ERAF makes available:

Bagging and Adaboost meta-learners that can improve the generalization
results in regression tasks of base learners, such as multi-layer percep-
tron and support vector machines, already available in R;

Tools for calculating mutual information, autocorrelation and false near-
est neighbors allowing the user to turn a forecasting problem into a re-
gression problem, on the basis of the embedding theorem and related
prescriptions;

We are extending the ERAF package in order to make available local fore-
casters [Abarbanel, 1996], and the procedures for Singular-Spectrum Analy-
sis [Vautard and Ghil, 1989; Vautard et al., 1992] able to extract trends from
the time series.
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Notes

1. The R language is available at http://www.r-project.org/ for the most common computer
platforms (Windows, Linux, Mac OS).

2. The package is available at http://mlsc.disi.unige.it/R.
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Abstract Ant Colony Optimization (ACO) algorithms are based on the imitation of how
ants of a colony find the shortest path between the nest and the food. This result
is achieved by stigmergetic information, i.e. ants deposit a chemical substance
(the pheromone) on the path they follow and their movement is guided by the
amount of pheromone.

The imitation of this simple mechanism is the core of any ACO algorithm.
In the present contribution we propose a new pheromone updating technique
with the aim of speeding up the resulting algorithm for rendering it suited to a
real-time implementation.

The ACO algorithms are very dependent on the specific application of in-
terest. In this contribution the Vehicle Routing Problem is considered and the
proposed algorithm is compared with 3 classic pheromone updating methods
with respect to known benchmarks.

Keywords: Swarm Intelligence, Ant Colony Optimizer, Combinatorial Optimization, Meta-
heuristic Algorithms, Vehicle Routing Problem

1. Introduction

Stigmergetic information was first introduced in biology to indicate indi-
rect communication mediated by modifications of the environment that can be
observed in several social insects with particular evidence in the case of ant
colonies. The communication among ants is achieved by means of pheromone
trails. A moving ant lays some pheromone on the ground, thus marking the
path by a trail of this substance. While an isolated ant moves at random,
successive ants can detect the pheromone and decide with high probability
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to follow the marked path, thus reinforcing the trail with its own pheromone.
The emerging autocatalytic collective behavior, tempered by pheromone evap-
oration, is characterized by a positive feedback: [Dorigo et al., 2000; Dorigo,
2001].

The Ant Colony Optimization (ACO) metaheuristic is obtained by imitating
the behavior of real ants. The artificial ants introduced for this purpose are
simple agents with some further capability with respect to real ants. In par-
ticular, they have some memory, they are not completely blind and live in an
environment where time is discrete.

The artificial ant colony moves on a graph directly associated with the prob-
lem to be solved. The path an ant follows defines a solution of the problem.
The choice of a branch of the path is based on a mechanism which uses a
suitable probability depending both on the pheromone laid on it and on some
specific property of the problem. The mechanism should balance between the
exploitation of the experience gathered by the ants of the colony and the explo-
ration of unvisited or relatively unexplored search space regions. This balance
is achieved through the management of the pheromone deposit by part of the
ants of the colony. Consequently, ACO algorithms are iterative and usually
consists of three main steps:

1 Generation of solutions by the ants of the colony according to private
and pheromone information;

2 Application of a local tuning to the ant solutions;

3 Update of the pheromone information.

This last step is the more significant and influential. For this reason, the
ACO algorithms proposed in the technical literature mainly differ for pheromone
management. In the present paper we suggest a simplified method for carrying
out this step. Since the convenience of an ACO algorithm strongly depends on
the specific performance required to the solution of the problem to be solved, it
is necessary to relate the proposed procedure to a specific problem. In the fol-
lowing we will focus our attention on a very important application, the Vehicle
Routing Problem (VRP).

The VRP is a well known combinatorial optimization problem, extensively
studied in the technical literature. It involves the construction of a set of vehicle
tours starting and ending at a single depot and satisfying the demands of a set
of customers, where neither vehicle capacities nor maximum tour lengths are
violated. The performance of the solution of the VRP is measured by the total
tour length L. Therefore, L should be minimized. The VRP belongs to the
class of NP-hard problems. Hence no efficient exact solution methods are
possible, and the existing solution approaches are of heuristic nature. Recently
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the focus of research on this problem was on the use of meta-heuristics, such
as ACO.

In the technical literature several procedures are proposed for solving the
VRP and optimal results concerning benchmarks are available. In the present
paper we exploit the pheromone updating with the purpose of obtaining an
algorithm with low computational burden yielding results close to the optimal
ones. The final goal is to speed up the resulting ACO algorithm for real-time
implementation even if that result is obtained at the cost of a slightly reduced
absolute accuracy.

2. Classical Pheromone Updating Algorithms and the
Novel Proposed Procedure

There are 3 classical techniques for pheromone management:

1 the Rank based Ant System (ASrank): [Bullnheimer et al., 1999];

2 the Max-Min Ant System (MMAS): [Stützle et al., 2000];

3 the Ant Colony System (ACS): [Dorigo, 1997].

They will be shortly described in the following in order to understand the suc-
cessive proposed procedure.

Rank based Ant System Pheromone is updated following two concepts bor-
rowed from Genetic Algorithms, namely ranking and elitism to deal with
the tradeoff between exploration and exploitation. In correspondence to
the current iteration, it is necessary to consider the solutions obtained up
to it by the ants of the colony. The ants are then ranked on the basis of
the quality of their solutions. The elite is constituted by the best E ants.
The updating formula for the (ij) branch depends on how it is involved
in the paths found by the elitists:

the branch is included in the path corresponding to the best solution
scoring a value of the objective function equal to Lbest. In this case
the pheromone updating is:

τij = ρτij +
E

Lbest
(1)

where (0 < ρ < 1) is the trail persistence.
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The branch is included in some of the paths found by the elitists. In
this case the pheromone updating is based both on the paths of the
set P where it is present and on the value of the objective function
Lr scored by the corresponding ant:

τij = ρτij +
∑
r∈P

E − r

Lr
. (2)

The branch is not included in the paths found by the elitists:

τij = ρτij . (3)

Max-Min Ant System In this case only the global best solution found during
the execution of the algorithm is reinforced. Namely, the branch (ij)
belonging to the corresponding path is updated by (1) with E = 1. All
other branches are subject to evaporation. Since this procedure may lead
to extensive exploitation and insufficient exploration, some simultane-
ous controls are added. More specifically upper and lower bounds, τup

and τlo , on the pheromone values are introduced to avoid stagnation
caused by large differences between the pheromone values. By tuning
the difference between the upper and lower bound the tradeoff between
exploration and exploitation can be modelled. Due to the pheromone
evaporation some values might decrease below τlo. In this case its value
is increased to τlo. The initialization of the pheromone is set to a value
greater than τup .This favors exploration in the early iterations of the al-
gorithm as the pheromone only gradually evaporates, and reinforcement
of good solution elements has a rather small impact. Over time some
pheromone values will tend to the upper bound, while most will tend to
the lower bound and the search turns from exploration to exploitation.

Ant Colony System As in the Max-Min Ant System, only the best solution
found up to the current iteration is reinforced. However, to avoid ex-
tensive exploitation of the best solution, evaporation is also restricted to
the elements of this best solution, while all other branches are left un-
changed. Moreover, a successive mechanism of evaporation is added in
order to force exploration by rendering the branches belonging to the
said solution less attractive. Therefore, in the successive iterations the
choice of these branches will not be the most attractive option and alter-
native choices will be made. This evaporation is done as follows:
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τij = ρτij + (1− ρ)τlo (4)

where τlo is the lower pheromone value to be used and (4) guarantees
that pheromone values are bounded below by this value as in the case of
the Max-Min Ant System.

Proposed Pheromone Updating Algorithm

The proposed method is a modification of ACS, taken into consideration for
its simple approach. ACS is potentially suited to obtain the speeding up of the
desired ACO algorithm. Observing the evolution of the ACS best solution over
time, we remark that two such successive solutions share several branches of
the associated paths.

Such property is not completely exploited in ACS, since the enhancement
of the pheromone level is carried out only for the branches belonging to the
current best solution path. Our proposed method, instead, fully exploits the
said property by enhancing the pheromone level also on the branches of paths
”close” to that best solution.

Moreover, in order to improve the balance between exploitation and explo-
ration, the pheromone is decreased on those branches belonging to solutions
distant from the best found one. This operation is equivalent to a selective fur-
ther pheromone evaporation. The proposed algorithm is therefore as follows,
with reference to the k-th ant of the colony:

if Lk < (1 + Θ)Lbest then

τpq = ατpq +
(1 − α)

Lk − Lbest
, ∀ (pq) ∈ Lk (5)

else, if Lk � Lbest

τpq = βτpq, ∀ (pq) ∈ Lk (6)

where (0 < α, β < 1) and Lk is the cost of the solution found by the k-th
ant; the update in (5) is performed if Lk 	= Lbest and Lk 	= Lk−1. The update
in (6) represents the above said further evaporation applied to the branches
belonging to very high cost solutions.

Since Θ may be viewed as a threshold on the solution’s cost, the modified
algorithm will be denoted in the following as Thresholded Ant Colony System
(t-ACS). The resulting algorithm is, in fact, a modified version of ACS.
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3. Simulation Results

In this section we compare the performance of the proposed algorithm against
the 3 other versions described in the preceding section. All the algorithms were
implemented in Matlab 6.5 and were tested on a set of 5 classic VRP bench-
marks ([Christofides et al., 1979]), ranging from 50 to 200 cities. For each
problem were executed 5 runs in constant time (max 720 seconds each). The
5-trial mean results for each problem are then averaged to provide a single-
valued performance index. The common parameters’ values were kept the
same during each run. Simulations were executed on a Pentium IV 2.4 GHz
1Gb RAM Windows 2000 PC.

Table 1. Performance comparison of 4 ACO variants for the VRP

ASrank MMAS ACS t-ACS

L% 90.01 88.36 89.46 91.95
σL% 0.94 1.31 1.24 0.80

T (sec) 541.46 639.34 656.49 536.44
mean.iter 32.52 73.52 12.92 8.88

Table 1 shows simulation results in terms of absolute accuracy obtained
by each algorithm in relation to the mean optimal solutions L∗

k, k = 1 . . . 5
reported in the technical literature relatively to the 5 considered benchmarks.
Namely, L% is obtained by averaging on the said benchmarks the mean best
solutions obtained over 5 trials for each algorithm, as follows:

L% = 100
L

L(alg)
; L(alg) =

1
25

5∑
k=1

5∑
i=1

L
(alg)
ik ; L =

5∑
k=1

L∗
k (7)

where L
(alg)
ik is the tour length obtained by each algorithm (ASrank, MMAS,

ACS and t-ACS) for each trial i in each benchmark k.
σL% is the standard deviation of L% over the set of benchmarks taken into

account.
In the same table there are also shown the mean CPU time T and the mean

number of colony iterations (mean.iter) needed to achieve the best solution.
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Table 2. Performance of 3 ACO variants in relation to t-ACS

ASrank MMAS ACS

L%RPD 2.11 % 3.90 % 2.70 %
TRPD +0.94 % +19.18 % +22.38 %

Table 2 shows mean Relative Percentage Difference (RPD) of the best solu-
tion found and mean RPD of the CPU times (for each algorithm j) in relation
to t-ACS’ performance, i.e.:

L%RPD = 100
L%(t−ACS) − L%(j)

L%(t−ACS)
, TRPD = 100

T (j) − T (t−ACS)

T (t−ACS)

.

(8)

The two above tables evidence the optimal performance of the proposed al-
gorithm in the given running time (720 sec) with respect to ACS and MMAS.
We note that the imposed convergence time limitation penalizes MMAS for its
slow converging behavior, also if it is potentially superior to the other algo-
rithms in terms of final accuracy.

Our method also outperforms ASrank in terms of CPU time required for
attaining the best solution. The gain amounts to about 1% due to a large reduc-
tion in the mean number of iterations.

4. Conclusions

In the present contribution we investigated the problem of speeding up ACO
algorithms by modifying the pheromone updating strategy. The performance
of the proposed method is analyzed with respect to the important VRP appli-
cation.

The results obtained so far are encouraging, although they are very prelim-
inary. In particular, the consideration of large problem instances is necessary
in order to evaluate the convenience of our approach, also in comparison with
different approaches to speeding-up ACO algorithms based on parallel imple-
mentation as in [Stützle, 1998].
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INDUCING COMMUNICATION PROTOCOLS
FROM CONVERSATIONS IN A MULTI AGENT

N. Nailah Binti Abdullah, M. Liquire and S.A. Cerri
Lirmm-University Montpellier II, 161 Rue Ada, Montpellier Cedex 5, France

Abstract This paper demonstrates some issues in agent interaction on the Web, which is
the center point of supporting the needs of fully-realized learning GRID in the
future. Of particular importance is the conversation support., with its core ele-
ment, communication protocols. We propose to construct communication proto-
cols through learning of performatives of ACL messages based on the FIPA-ACL
messages. The work involves two steps: 1) converting real conversations into a
markup agent communication language and then 2) inducing communication
protocols based on these set of converted conversations.

Keywords: Agent communication languages, multi agent system, evolutionary computation,
machine learning, GRID

1. Introduction

Real World Scenario. We unfold an important domain. [Clancey, 2003]
presented a scenario of research collaborators, scientist who engage in a joint
project. The author studies the collaboration between scientist at Haughton
Crater in the High Canadian Artic. They have A working with B on Devon
Island, where these people bring additional research capabilities to an effort.
Each may be specialized in using particular instrument, or doing a particular
kind of analysis. Joint research is defined as collaborators negotiating goals-
such as (i.e. who will do what, how capabilities and efforts will leverage off
of one another). They enter into normally an informal contract, or may write a
research proposal to define roles and responsibilities. During this work, collab-
orators sustain other commitments and participation. Collaborating scientists
must negotiate because it is assumed that they retain their individual inter-
ests and their contributions will serve multiple, personal purposes. Because of
the interests and intelligent capabilities of professional participants, success-
ful collaboration requires negotiation of objectives, methods, roles and sched-
ules [Clancey, 2003]. Handling thousands of large jobs for a big complex like
NASA or SDSC computer centers led the managers to create control software
and a network to connect scientists to a remote system leading to the GRID.
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GRID computing refers to computing in a distributed networked environ-
ment where computing and data resources are located throughout a network
[Jiang and Cybenko, 2004]. Certain services must be identified during the
course of collaboration to fulfill the needs of the collaborators and in turn
maximizing what the GRID can provide [Jiang and Cybenko, 2004]. Knowing
exactly what to provide to the collaborators as services is not a simple task,
as computer users themselves do not potentially know what sort of services
the computer systems can provide. One suggestion is to learn dynamically the
sort of services that the learning GRID may provide [Cerri et al., 2004]. This
can be initially achieved through tracking the conversational process [Clancey,
2003]; among the collaborators and/or among the communicating agents.

A successful GRID is an incorporation of an Multi-Agent Systems (MAS)
which organizes the collaboration between the participants. An MAS can sup-
port distributed collaborative problem solving that is required by the GRID by
agent collections that dynamically organize themselves having diversified ca-
pabilities and needs. Thus, enabling scientists to generate, analyze, share and
discuss their insights, experiments and results in an effective manner on the
GRID.

During the course of collaboration, interaction emerges and challenges of
specifying and implementing agent communication protocols emerges as well
[Paurobally and Cunningham, 2002]. The communication protocol aspects
between the artificial agents↔artificial agents and human↔artificial agents
needs to be defined to give a guideline on how agents should communicate with
each other and to accommodate the kinds of exceptions that arise in MAS.

Our proposed work focuses on two main aspect: 1) learning agents’ con-
versations and 2) construction of communication protocols inductively.

2. Agents conversations in a society with social protocols

Agent programs are designed to autonomously collaborate with each other
in order to satisfy both their internal goals and the shared external demands
generated by virtue of their participation in agent societies [Draa and Dignum,
2002]. The balance between collaboration and fulfilling it’s own goals is made
by each agent individually and depending on the situation. Due to this au-
tonomy of the agents the collaboration needs a sophisticated system of agent
communication. An assumption is made that an Agent Communication Lan-
guage (ACL) can best handle the issues of communication between agents.

As part of its program code, every agent must implement tractable decision
procedures that allow the agent to be able to select and produce ACL messages
that are appropriate to its intentions [Draa and Dignum, 2002]. By engag-
ing in pre-planned or stereotypical conversations, much of the search space of
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Figure 1. Web services for a collaboration between work groups.

possible agent responses can be eliminated, while still being consistent with
the ACL semantics.

When agents join in one or more roles in an environment, they acquire the
commitments that go with their individual and social roles. The commitments
of a role are restrictions on how agents playing that role must act and, in par-
ticular, communicate. Such requirements requires communication protocols to
ensure a non-dysfunctional system. Current initiative to construct protocols
are normally being predefined. It is very unlikely, that all protocols and their
exceptions can be predefined without a formal definition and a centralized lan-
guage when concerning a collaborative environment.

Agents communicating with each other on a certain task

MAS Scenario. Agent1 contacts Agent2 about defining job roles in a re-
search group. For protocol, they agree to use a modified Agent Communica-
tion Language, in which each message contains one of a half-dozen standard
performatives to identify the intent of message, and message contents follow
a standard define-your- role ontology. The client requested something which
was not defined in the standard-performatives and thus conversation during this
particular context has terminate as if nothing took place and was replied with
a performative “not- understood”. Situation has been modified from [Hanson
et al., 2002]. Readers please refer to Figure 1. One of the messages would
have probably been:
(volunteers1 :sender AG1; :receiver AG2 :content ( role (AG1, group- motivator) ← meeting-

group (x) = = true))

The performative volunteers does not exactly fit the standard performatives
such as inform, request and propose as defined in the FIPA-ACL [Abdullah
et al., 2004].
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This unexpected messages may turn to be valuable, because they may con-
tain clues as to how they should be handled. We need a proper assignment of
function. One way in handling these problem is providing adaptability in com-
munication protocols which may be achieved if we primarily learn the conver-
sations. No institution wants to lose a prospect service from their employees
because its messaging software refused to deliver the employees’s idiosyn-
cratic offer.

Sample Data

We use real dialogues between people chatting online and in shops. Refer
to [Abdullah et al., 2004] for the complete sample data. Real chat conversa-
tions were converted using equational fragment of first order logics (contains
function symbols,predicates and equality) to convert into a markup FIPA-ACL.
The conversion steps can be found in [Abdullah et al., 2004]. We will use these
sample data as some of the input to the learning algorithm for inducing proto-
cols.

Sample Chat 1: Ordering a pizza through the phone

1. Lorenzo: " Hi there. How can I help you?" 2. John : "Well, do you deliver? "
ask (L, J, want (J, anything)) ask (J, L, deliver (item))
(request-whenever (request
:sender L :sender J
:receiver J :receiver L
:content ( give (J, anything)) :content ( deliver (item))
:reply-with re2) :in-reply-to re2)

Communication protocols

Step Number
Agent Performing

Action
Action

Resulting
Negotiation State

-negotiating

1
Agent Lorenzo
from Lorenzo’s

pizza

Initial-offer

medium pizza,
two toppings,

7.00 euros,
free delivery

Offered (lorenzo)

medium pizza,
two toppings,

7.00 euros,
free delivery

2 Agent John
for client John

John.agree

medium pizza,
two toppings,

7.00 euros,
free delivery

Agreed (john)

Agreement :
Lorenzo delivers
a medium pizza,
two toppings for

7.00 euros to John.
Scenario 2.3. John buying a pizza from Lorenzo’s Pizzeria.
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Figure 2. A markup model of a finite state automaton for the demonstration of communication
protocol for scenario in Scenario 2.3.

Refer to Figure 2. This is a markup model of a possible finite state automa-
ton used for inducing communication protocols [Abdullah et al., 2004]. This
model is not complete, we have to take into account if Agent John cancels the
order when the pizza did not arrive in 45 minutes or change the type of top-
pings he had ordered. There are probably many other possible events that may
occur even in a simple example such as buying a pizza and many possible mod-
ifications to be made to Figure 2. So many possible ways to handle situations
and exceptions.

3. Requirements of an agent communication protocols

Protocols generally require: 1) precise format for valid messages (a syntax);
2) procedure rules for data exchange (grammar); and 3) vocabulary of valid
messages that can be exchanged, with their meaning (semantics) [Holzman,
1991]. The grammar of the protocol must be logically consistent and complete;
under all possible circumstances the rules should be prescribe in terms what
is allowed and what is forbidden in order to maximize the best performance
in collaboration acts. Important needs of an agent communication protocols;
which are in our opinion are: 1) Consistent 2) Interactive; 3) Adaptive; 4)
Capable of solving state of conflicts between protocols (i.e. shifting and firing
protocols) and at the same time; 6) Explanatory. Please refer to [Abdullah
et al., 2004] for comparions of the current state of the art of communication
protocols.

4. The proposed learning model

We consider these properties for the learning model; 1) feedback properties
(i.e. neural networks); 2) adaptiveness and merging (i.e. genetic algorithms)
and 3) representation language (i.e. galois lattice). The set of inputs to the
learning algorithm will be the set of performative exchanges. During the first
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stage of simulating learning among these agents, the goal is to study the in-
teractions of performatives exchanges. A feedback property in the learning
model allows agent A to update its’ conversational rule when some performa-
tives sent could not be understood by agent B or that certain action that agent
A wants agent B to execute could not be executed. Whereas adaptiveness and
merging is crucial to understand interactions of agents at the population level
(i.e. domain) and provides basis for understanding the role of performatives
in communication protocols. The model will consists a population of agents
in a virtual environment, each of which holds a number of structure that allow
them to generate sentences (i.e. performatives) as well as analyze other agents’
performatives.

The set of output of these agents should be a set of possible communication
protocols. The environment itself would need constraints, so that the commu-
nication will terminate if it does not converge or when value of communication
decreases (i.e. negative).

5. Conclusions

We begin our study by analyzing real conversations on the Web. We suggest
that conversation support is vital in any interactive environment that employs
different artificial agents and each interacting to fulfill their own goals. In
particular, we discuss issues that normally arises during interaction between
a service and a client agent. Although, some communication protocols have
been established for these purpose, none however focuses in improving the
conversations itself among these agents.Communication protocols are gener-
ally to ensure that the agents abides to a certain “rule” during communication,
however little attention is given to unexpected messages. As a consequence,
the core issue of finding out why certain malfunction interaction goes unstud-
ied. We have suggested to use an evolutionary computational method as well
as machine learning technique that initially learns the conversational examples
of interacting agents through different steps of generations. Experimentation
will be done in the near future once the tools are made available. Later, we
shall hope that these findings provide us as a mean to construct communica-
tion protocols inductively.
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Abstract A methodology for sub-symbolic semantic encoding of words is presented. The
methodology uses the standard, semantically highly-structured WordNet lexical
database and the SemiDiscrete matrix Decomposition to obtain a vector repre-
sentation with low memory requirements in a semantic n-space. The application
of the proposed algorithm over all the WordNet words would lead to a useful
tool for the sub-symbolic processing of texts.

Keywords: SemiDiscrete Decomposition, Sub-symbolic encoding of words, Statistical Nat-
ural Language Processing

Introduction

The sub-symbolic approach to natural language processing has gained con-
siderable attention over the last years [Bellegarda, 2000; Hofmann, 2000; Hon-
kela et al., 1995; Siivola, 2000; Siolas and d’Alche Buc, 2000; Yang and Lee,
2000]. The simplest method to associate uncorrelated codes to words is to
assign a unit vector for each token. However this method is not manageable
when a large number of words has to be considered, therefore Honkela et al.
[Honkela et al., 1995] used a SOM Network for creating word category maps
describing relations of words based on their contexts. In more recent years a
framework has been developed, called Latent Semantic Analysis (LSA)[Lan-
dauer et al., 1998]: according to this technique, text data is represented as
a words-by-documents co-occurrence matrix, then the SVD decomposition is
used to generate a semantic space where words and documents can be mapped.
Another framework, similar to LSA, for developing high dimensional vector
representations of words based on a co-occurrence analysis of large samples
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of written texts, is the Hyperspace Analogue to Language [Burgess and Lund,
2000] method, while a different methodology, called Random Indexing has
been developed by Sahlgren [Sahlgren et al., 2002] for constructing context
vectors representing the distributional profiles of words. Other approaches can
be found in [Siolas and d’Alche Buc, 2000; Widdows et al., 2002; Yang and
Lee, 2000].
All the aforementioned techniques extract and represent the meaning of words
by statistical computations applied to a large corpus of raw texts; however, in
various applications of the human language technology, it is commonly used
WordNet[Miller et al., 1990], a lexical database which represents the largest
publicly available lexical resource where lexical information is organized in
terms of word meanings in a semantic net.
In this paper it is presented a methodology for a “standard” sub-symbolic se-
mantic encoding of words. It exploits both the well-founded, standard, struc-
ture of WordNet[Miller et al., 1990] instead of an arbitrary text corpus, and the
LSA paradigm to generate a semantic space where each WordNet word can be
represented as a vector. The idea is an evolution of what presented in [Vas-
sallo et al., 2003]: it exploits the LSA paradigm to generate a semantic space,
in which all WordNet words can be mapped. The proposed technique differs
from other similar works cited above because a) the Tanimoto measure is used
to calculate the meaning similarity between words; b) the LSA paradigm is
applied to a standard lexical database (WordNet) instead of a free text corpus;
c) because WordNet is very large, the SemiDiscrete Decomposition technique
(SDD) [Kolda and O’Leary., 2000] has been chosen for its low memory re-
quirements, instead of the classical SVD matrix decomposition used in LSA.
For the same reason, all words have been grouped according to the WordNet
lexicographers’ files classification criteria: these groups have been called “lex-
ical sets”. As a consequence the vector representing a word is composed of
two parts, called “lexical part” and “semantic part”. While the lexical part is
built in a prearranged way, the semantic part instead is calculated using the in-
formation yielded by the WordNet lexical database [Miller et al., 1990] and the
Semi Discrete Matrix Decomposition algorithm [Kolda and O’Leary., 2000].
Preliminary experimental results, obtained processing the “noun.motive” Word-
Net lexical set are also reported: the harmonic mean of precision and recall
[Sebastiani, 2002] yielded is an interesting 0.82.

1. Theoretical Background

WordNet

WordNet is a lexical database that organizes lexical information in terms of
word meanings in a semantic net [Miller et al., 1990]. Nouns, verbs, adjectives
and adverbs are settled into synonymous sets, which are further arranged into a



WordNet and SemiDiscrete Decomposition... 193

set of 45 “lexicographers’ files” by syntactic category and other organizational
criteria.
The term “word” is generally used to relate both to the orthographic expres-
sion and its associated meaning. In WordNet the term “word form” is used
for referring to the physical utterance or inscription and “word meaning” for
referring to the associated lexicalised concept. In WordNet, a word meaning
is represented by listing the word forms that can be used to express it: this set
of synonyms is called “synset”. A short gloss is usually connected to a synset
to specify the associated concept. In order to discern the different meanings of
a word form, WordNet associates an integer, called “sense number”, to each
word form [Miller et al., 1990]. In this paper, for simplicity, the term “word”
indicates the word form associated with its sense number. Therefore, one word
form with different sense numbers represents different “words”.

Latent Semantic Analysis and Semidiscrete Matrix
Decomposition

Latent Semantic Analysis (LSA) [Landauer et al., 1998] is a paradigm to
extract and represent the meaning of words by statistical computations applied
to a large corpus of texts. LSA is based on the vector space method: a text
collection is represented as a matrix �A where rows are associated to words,
while columns are associated to documents or other contexts. The content of
the (i,j)-th cell of �A is a function of the i-th word frequency in the j-th text; then
the matrix �A is replaced with a low-rank approximation generated by the trun-
cated singular-value decomposition (SVD) technique [Landauer et al., 1998].
Kolda et al. proposed to use another decomposition technique, called SemiDis-
crete Decomposition (SDD) [Kolda and O’Leary., 2000] which approximates
the matrix �A as a weighted sum of external products formed by vectors with
entries constrained to be in the set S = {−1; 0; 1}. The SDD decomposes an
m×n matrix �A as �A ≈ �X �D�ZT , where each column of �X is an m-vector with
entries from the set S = {−1; 0; 1}, each row of �Z is a n-vector with entries
from the set S, while �D is a diagonal matrix with positive scalar elements.
The SDD-based LSA works as well as the SVD-based LSA, requiring approx-
imately less than one twentieth of the storage [Kolda and O’Leary., 2000].

2. The Proposed Solution

The aim of the work is to encode each word of the well founded and struc-
tured WordNet lexical database as a sequence of n numbers, representing a
vector in a n-space, so that semantically near words will be also close points in
this n-dimensional space that will therefore constitute a semantic space.
Since words composing a synset represent the same meaning, they will be en-
coded as the same n-vector, which is called here “synset vector”. Then the goal
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turns to how to encode all the single synsets of WordNet.
Because WordNet is a huge semantic net, we have decided to build the synset
vector as composed of two parts: the first one is called “lexical part” and in-
dicates the lexical information, while the second one, called “semantic part”,
indicates the semantic information. The lexical part is constituted by n1 ele-
ments, while the semantic part by n2 components. Then a synset will be repre-
sented as a point in a space of n = n1 +n2 dimensionality. The whole process
is illustrated in figure 1 and it will be explained in the following paragraphs.

Figure 1. Procedure of encoding the k-th synset of the i-th lexical set

The “Lexical” Part

All the synsets contained in WordNet have been grouped according to the
classification criteria adopted by lexicographers who concurred to the creation
of WordNet. Accordingly, we call the resultant groups of synsets “lexical sets”.
The dimension n1 of the lexical part is 45, corresponding to the number of lex-
ical sets; therefore, if a synset belongs to the i-th lexical set, the corresponding
lexical part will be tagged by a 1 in the i-th position and by 0 in the rest of the
lexical part.

The “Semantic” Part

To build the semantic part of a synset vector, it has been introduced a set of
word forms, called “descriptive set”, which goal is to describe the meaning of
a synset. Descriptive sets play a key role in the whole process. The descriptive
set of a synset is constructed by using the information in the WordNet semantic
net, i.e.

all the word forms of the synset itself;

the word forms of the syntactic category of nouns and adjectives in the
gloss of the synset (example sentences are not considered);
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the word forms of the direct hypernym synset.

Because several uninflected words can be found in the gloss, each noun and
adjective of the gloss has been transformed in its base form using the JWNL
(Java WordNet Library) morphological processor [Didion, 2002].
In order to calculate the semantic part, we introduce:a) a semantic similarity
measure between sets to calculate the similarity matrix; b) a distance measure
to transform the similarity matrix into a distance matrix; c) a matrix decompo-
sition algorithm to recover the latent semantic information from the distance
matrix. In the following, the descriptive set of the k-th synset belonging to the
i-th lexical set will be indicated by Si(k), the number of synsets belonging to
the i-th lexical set will be indicated by Mi, whereas the n2-vector correspond-
ing to the semantic part of the k-th synset of the i-th lexical set will be indicated
by wi(k).

Calculus of the Semantic Similarity and Distance Matrix. To express
the semantic similarity between synsets (represented by descriptive sets), it
has been used the Tanimoto measure [Sloan Jr and Tanimoto, 1979] which
is a measure of similarity between sets. According to this measurement, the
semantic similarity between the synsets k and j belonging to the i-th lexical set
is defined as:

simi (k, j) ≡ |Si(k)∩Si(j)|
|Si(k)∪Si(j)| (1)

It is usual that descriptive sets of synsets with different meaning occasionally
present some word forms in common. This leads to a value of simi (k, j)
greater than zero; for this reason the similarity has been filtered so that:

simϑ
i (k,j)=

{
simi (k, j) if simi (k, j) ≥ ϑ
0 otherwise

(2)

where the value of the parameter ϑ is experimentally determined.
The filtered value simϑ

i (k, j) will be the general element (k, j) of the “sim-
ilarity matrix”. Starting by simϑ

i (k, j), it is possible to define a “semantic
distance” between the k-th and j-th synsets belonging to the i-th lexical set as:

δϑ
i (k, j) = 1− simϑ

i (k, j) (3)

The value δϑ
i (k, j) represents the (k,j) element of the “semantic distance ma-

trix” �Δϑ
i associated to the i-th lexical set:

�Δϑ
i ≡

[
δϑ
i (k, j)

]
(4)

where k and j are ranging from 1 to Mi, therefore dim
(

�Δϑ
i

)
= Mi. Further-

more the matrix �Δϑ
i is square, symmetric, with a null diagonal and its elements

are ranging in the interval [0, 1].
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Semantic Distance Matrix Decomposition. In order to calculate the se-
mantic parts �wi(k), it has been applied the semi-discrete decomposition algo-
rithm (SDD) to the semantic distance matrix. Experimental results proved that
it is necessary to pre-process the distance matrix before decomposing it. The
pre-processing is based on a non linear mapping of the range of the distance
matrix elements’ values from [0, 1] to [1, eα], using the formula[Vassallo et al.,
2003]:

aϑ
i (k, j) ≡ eα·δϑ

i (k,j) (5)

where α is a parameter to be experimentally determined, and δϑ
i (k, j) is the

element (k, j) of the matrix �Δϑ
i (see formula (3)). The value aϑ

i (k, j) deter-
mines the element (k, j) of the new semantic distance symmetric matrix �Aϑ

i
for the synsets belonging to the i-th lexical set.
The SDD decomposes each �Aϑ

i into three matrices:

�Aϑ
i = �Xϑ

i,h
�Dϑ

i,h
�ZϑT

i,h (6)

The semantic parts �wi(k) of the synsets belonging to the i-th lexical set are
given by the rows of the matrix �Xϑ

i,h, and the dimension n2 of the vectors
�wi(k) is determined by the number of elements generated by the SDD, that is
n2 = h.

3. Experimental Results

In order to examine the semantic part of the synset vector, to each synset k
of the i-th lexical set it has been associated the set of its hypernyms and hy-
ponyms belonging to the same lexical set. This set has been called “reference
correlation set”. We made this choice to test both the preservation of informa-
tion (the direct hypernym is part of the descriptive set) and the “generalization”
capability of the technique (an hyponym is a word whose meaning contains the
entire meaning of another word).

Evaluation procedure

The synset vectors are calculated and for each synset, the scalar products
are sorted in increasing order. We use a threshold to select a significant set of
correlated synsets. This set of synsets will be called in the following “calcu-
lated correlation set”.
The effectiveness of the encoding is determined evaluating the correspondence
between the reference and the calculated correlation sets. On this purpose, it
has been used the harmonic mean f of precision π and recall ρ computed as
macroaveraging (i.e. all the correlation sets count the same) according to the
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following formulas[Sebastiani, 2002]:

π =

∑C
i=1

TPi
TPi+FPi

C
, ρ =

∑C
i=1

TPi
TPi+FNi

C
, f =

2πρ

π + ρ
(7)

where C is the number of correlation sets, the precision πi is the percentage
of synsets deemed to belong to the i-th reference correlation set that in fact
belong to it and the recall ρi is the percentage of synsets belonging to the i-th
correlation set that are in fact deemed to belong to it; TPi, FPi and FNi refer
respectively to the sets of true positives (i.e. the set of the calculated relevant
synsets), false positives (i.e. the set of the calculated non-relevant synsets) and
false negatives (i.e. the set of the non-calculated relevant synsets) of the i-th
correlation set.

Analysis of the “noun.motive” lexical set

To show the efficiency of the encoding technique, the preliminary results
obtained with the noun.motive lexical set, which is the same lexical set used
in [Vassallo et al., 2003], are here reported. The 16-th lexical set noun.motive
holds the synsets belonging to the syntactic category of nouns regarding “the
reason for the action or that which gives purpose and direction to behavior”,
according to the WordNet lexical database.
Experimental trials prove that ϑ = 0.9 (formula(2)), α = 5 (formula(5)) and a
number of n2 = h = 100 (formula(6)) is a good choice for the generation of
the semantic part.
The application of the encoding evaluation methodology presented in the pre-
vious paragraph to the noun.motive lexical set gave a value of precision π of
0.74, a value of recall ρ of 0.92, and consequently the value of the harmonic
mean of precision and recall yielded is 0.82.

4. Conclusion and Future Work

A methodology which exploits the WordNet semantic net and the SDD tech-
nique for sub-symbolic semantic encoding of words has been illustrated. First
preliminary results are interesting: future work will regard more evaluation re-
sults and comparison with other methods. The proposed technique will lead
to a useful tool for the sub-symbolic processing of texts using, for example,
neural networks for tasks of classification, organization and automated search
in non structured repositories of texts.
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AN IN VIVO TEST 
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Abstract:  In the frame of a collaboration between Department of Information technology 
of the University of Milan and Stem Cells Research Institute of the DIBIT- San 
Raffaele, Milan,  learning methods are under study following known models of 
the Artificial Neural Networks on human neural stem cells cultured on MEA 
(Multielectrode Arrays) support. The MEAs are constituted by a glass support 
where a set of tungsten electrodes are inserted to form a lattice structured by 
our group following the artificial Hopfield and Kohonen models. In such a way 
it is  possible to electrically stimulate the neurons and to record their reaction, 
opening the possibility to verify in vivo  learning models of the Artificial 
neural Networks.  Neurons are stimulated with digital patterns constituted by 
bursts of different voltages at the input electrodes, and the electrical output 
generated by the neurons is analyzed with advanced  methods in order to 
highlight organized answers by the natural neural network. The experiments 
performed up to now show how neurons react selectively to different patterns 
and show similar reactions in front of the presentation of identical or similar 
patterns. These results  suggest the possibility of using  the learning 
capabilities of these hybrid networks in different application fields, in 
particular in bionic applications. 

Keywords:  Neural Networks, Stem Cells, Learning, Microelectrode Arrays. 
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1.     Introduction 

During the last decade several experiments have been performed on the 
interfacing between electronic devices and biological neurons, in order to 
develop useful tools for the neurophysiological research and to build  the 
technological bases for future bioelectronic prostheses, bionic robots and 
biological computers. 

As microelectrodes implanted directly into brain give rise to infections, 
scientist are experimenting the direct attachment of neurons to conductive 
material.

Important results have been achieved by groups of the Max Planck 
Institute [Fromherz et al., 1991] , the Georgia Tech [Lindner and Ditto, 
1996] , the Northwestern and Genoa University [Reger et al., 2000]  and the 
Caltech [DeMarse et al., 2002] . 

Aim of our group is to develop architectures based on Artificial Neural 
Networks (following in particular the Hopfield and Kohonen models) using 
human neurons adhering to a glass support endowed with microelectrodes 
(MEA).

The MEAs are connected to a PC by means of a standard acquisition card 
and custom hardware that allow both to stimulate the neurons and to record 
the voltages generated by the neurons, allowing  to monitorize the electrical 
activity of the neural network  after the pattern stimulation. 

In such a way we are able to investigate  the  learning capabilities of 
networks of biological neurons and the possible technological applications of 
such hybrid architectures. 

2.    Materials and Methods 

The problem of the adhesion between neurons and electrodes is crucial: 
materials have to be biocompatible and neurons must adhere firmly to the 
MEA electrodes in order to obtain the maximum local conductivity. 

Our MEAs are glass disks with 90 nickel-tungsten electrodes whose 
diameter is around 10  . The mean distance between electrodes is 70  (Fig. 
1). In such a way we should have  approximately one neuron for each 
electrode. The MEA is connected to the PC via an USB acquisition card 
(IOTech Personal DAQ/56). 
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Figure 1. MEA’s structure 

Our neurons are adult cells cultured by indifferentiated stem cells 
[Vescovi et al., 1999] . 

In our experiments the electrodes have been connected following two 
theoretical models: 
- A Kohonen Self-organizing Map [Kohonen, 1990], composed by an 

input layer and a competitive layer connected following the standard 
architecture. In the  Kohonen models, as known, the classification 
capability is carried out by means a competition between neurons. 

- A Hopfield Network [Hopfield, 1984] , where the set of input electrodes 
coincides with the set of output electrodes. In the theoretical model, 
learning  takes place when the network stabilizes in an equilibrium 
configuration and memories are placed in the local minima of the energy 
landscape.

The choice of these models is due both to their architecture, easy to 
implement on MEAs, and to their resemblance to neurophisiological 
structures, often highlighted by their authors [Kohonen, 1990], [Hopfield, 
1984].

The next step was to realize two hybrid networks able to discriminate 
simple patterns. A software simulation showed  that the minimum 
configurations able to recognize two different patterns , "zero" and "one", 
pure or affected by noise, formed each one by 8 bits, were 
1) a Kohonen networks with 8 input neurons and 3 output neurons and  
2) a Hopfield networks with 8 input/output neurons . 

These networks have been implemented on the MEAs, culturing the stem 
cells on the connection sites and structuring the networks correctly  by means 
of hardware connections (Fig.2). 

The input patterns are converted into suitable electrical stimuli (similar to 
the biological action potentials at 40 Hz ) by a custom hardware device. The 
output  signals are also sampled at 40 Hz. These choices have been made on 
the basis of  neurophysiological considerations. In fact several studies seem 
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to confirm that signals related to the most advanced CNS activities 
(perception, cognition, conscience) synchronize around 40 Hz [Menon and 
Freeman, 1996] . 

Figure 2. Kohonen (left) and Hopfield (right) architecture on MEA 

In order to be sure that the recorded signals were actually coming from 
the electrical neural activity, we compared the reaction of a MEA containing 
only culture liquid with the electrical activities of the MEA with living cells 
(Fig. 3) .

Figure 3. Electrical signals from neurons 

It is evident that the neurons reply to a “zero” pattern, formed by  the 
highest voltage (all the 8 electrodes “on”), emitting the lowest voltage (green 
circles in figure), whereas the culture liquid, as expected by a conductive 
medium, answers to the “zero” pattern with a high voltage (Fig. 4). 
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Figure 4. Electrical signals from the culture liquid 

Fig. 5 shows the reaction of the Kohonen network after the stimulation 
with “zero” patterns pure or affected by noise (green circles)  and with “one” 
patterns pure or affected by noise (red circles) . Similar effects have been 
shown even by the Hopfield network. 

                   Figure 5. Electrical signals from neurons stimulated with different patterns: “zero” 
(green circles) and “one” (red circles) 

A training phase has been carried out on the networks by stimulating 
them repeatedly  with all the patterns, pure and affected by noise. 

At the end of the experiments we recorded the neural activities in order to 
ascertain the presence of  “permanent” learning. Differently from the culture 
liquid, that shows the same kind of behavior before and after the 
stimulations, the MEAs with neurons show significant differences in their 
electrical activities. 

The recorded activities have been analyzed by means of Recurrence 
Quantification Analysis (RQA) [Zbilut and Webber, 1992] . 
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Such non-linear analysis tool elaborates the signal time series in a multi-
dimensional space , that is the phase space of the dynamical system 
represented by the neural network signals. 

Recurrent Plots show how the vectors in the phase space are near or 
distant each others. All the distances between the vector pairs are calculated 
and translated into colour bands. Hot colours (yellow, red, orange) are 
associated to  short distances, cold colours (blue, black) show long distances. 
Signals  repeating fixed distances between vectors are organized, signals 
with random distances are not. 

In this way we obtain uniform colour distribution of random signals, 
whereas deterministic and self-similar signals show structured plots with 
wide colour bands. 

Our RQA  analysis of the neural activity lead to interesting results: after 
the training, signals coming from the reply to similar patterns form similar 
Recurrent Plots. In the following figures we can see the self-organization of a 
single output channel (corresponding to a specific electrode/neuron) before 
stimulation, during training  and after training as a reply of a specific pattern. 

Figure 6a. RQA plot of  a Kohonen output channel before stimulation 

Figure 6b. RQA plot of  a Kohonen output channel after training 
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Fig. 6a shows a Kohonen output channel before stimulation. The plot is 
not structured  and show lack of self-organization

The training  phase generates a change in the plots structure. The plot of 
the same channel after the training phase (fig. 6b) shows wide uniform 
colour bands corresponding to  high self-organization.  The band width 
grows in time during the training. 

Fig. 7a shows the answer after stimulation with “zero “ pattern and Fig. 
7b shows the same output  after stimulation with “one” pattern. The plots 
show that the network behaves differently depending on the stimulation 
pattern.

Figure 7a.RQA plot after stimulation with “zero” pattern 

Figure7b. RQA plot after stimulation with “one” pattern 

We applied the same procedure to the output signals coming from the 
Hopfield network, obtaining the same kind of reactions. 
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3.    Discussion and Conclusions 

After a qualitative analysis of the output signals we can reasonably affirm 
that stimulation with organized electrical patterns modifies the system and  
improves the system information suggesting a kind of learning and 
memorization.

The neural networks show, after a  training  stage constituted by iterated 
stimulation with different patterns, an organized behavior and the capability 
of reacting selectively to different patterns. 

Besides, similar patterns make the neurons react in similar manner. 
Thus the neurons show a form of selective coding, highlighting a strong 

and lasting  self-organization as a reply of stimulation. 
In the future we will improve both the cell culture on MEA and the 

measuring and interfacing tools and the analysis methods. We will also 
increase the connections between MEAs and PC in order to implement more 
complex networks. 

At the moment we are carrying on experiments with more complex 
patterns and new kinds of analysis of the output signals. In particular, we are 
using  the ITSOM Artificial neural network [Pizzi et al., 2002]  in order to 
codify the output and to discriminate the neural response.

Our first results are encouraging , confirming the possibility of 
discriminating different patterns by means of different binary strings, coming 
out from the artificial network that elaborates the biological signal output. In 
this way it will be possible to use the neural replies in several ways, from 
robotics to biological computation to neuro-electronic prostheses. 

Our new experiment, with a much faster acquisition card and a more 
advanced custom hardware, is designed to implement a real actuator. We will 
stimulate with simple commands the hybrid network system, the biological 
network will reply with a train of signals that the artificial network will 
codify in  binary string that will pilot a minirobot. 
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Abstract The standard SVR formulation for real-valued function approximation on multi-
dimensional spaces is based on the ε-insensitive loss function, where errors are
considered not correlated. Due to this, local information in the feature space
which can be useful to improve the prediction model is disregarded. In this pa-
per we address this problem by defining a generalized quadratic loss where the
co-occurrence of errors is weighted according to a kernel similarity measure in
the feature space. We show that the resulting dual problem can be expressed
as a hard margin SVR in a different feature space when the co-occurrence er-
ror matrix is invertible. We compare our approach against a standard SVR on
two regression tasks. Experimental results seem to show an improvement in the
performance.

Keywords: Regression, Support Vector Machines, Loss Functions, Kernel Methods.

1. Introduction

Statistical Learning Theory [Vapnik, 1998] provides a very effective frame-
work for classification and regression tasks involving numerical features. Sup-
port Vectors Machines are directly derived from this framework and they work
by solving a constrained quadratic problem where the convex objective func-
tion to minimize is given by the combination of a loss function with a regular-
ization term (the norm of the weights). While the regularization term is directly
linked, through a theorem, to the VC-dimension of the hypothesis space, and
thus fully justified, the loss function is usually (heuristically) chosen on the
basis of the task at hand. For example, when considering binary classification
tasks, the ideal loss would be the 0-1 loss, which however cannot directly be
plugged into the objective function because it is not convex. Thus, convex up-
per bounds to the 0-1 loss are used, e.g., the Hinge loss or the quadratic loss.
In general, however, the used loss does not exploit the correlation that the in-
put patterns may exhibit. A first attempt to exploit this type of information for
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classification tasks has been presented in [Portera and Sperduti, 2004], where
a family of generalized quadratic loss is defined. The basic idea is to first
of all take into consideration the correlation between input patterns (eventu-
ally corrected by the targets of the involved examples), which can be coded as
cross-coefficients of pairs of errors in a fully quadratic form, and then to modu-
late the strength of these cross-coefficients through a new hyperparameter. The
“right” value of this new hyperparameter is then chosen by a search in the hy-
perparameters space (eventually involving a validation set) of the machine so
to optimize the final performance [Zhang and Oles, 2001]. The experimental
results presented in [Portera and Sperduti, 2004] seem to indicate a systematic
improvement in the performance.

In this paper, we show that the same idea and advantages can be extended to
real-valued function regression. Specifically, we suggest to use a loss function
that weights every error associated to two patterns proportionally to the pattern
similarity. This can be done by modifying the primal objective function of the
SVR model with a loss that is a quadratic expression of the slack variables,
weighting couples of errors by a pattern similarity measure based on a kernel
function. In addition, signed slack variables are used so that given two distinct
patterns, the modified SVR solution will penalize couple of errors (of similar
patterns) that are both due to an overestimate (or underestimate) of the target
values versus couple of errors (of similar patterns) that are due to an overesti-
mate of one of the target values and an underestimate of the other target value.
This method should bias the learning towards solutions where the local con-
centration of errors of the same type (either underestimate or overestimate) is
discouraged.

We show that using this generalized quadratic loss function in a Support
Vector Regression method, the resulting dual problem can be expressed as a
hard margin SVR in a new feature space which is related to the original fea-
ture space via the inverse of the similarity matrix and the target information.
Thus, in order to get a well-formed dual formulation we need to work with a
similarity matrix which is invertible.

We compare our approach against a standard SVR with ε-insensitive loss
on a couple of regression tasks. The experimental results seem to show an
improvement in the performance.

2. SVR definition for a generalized quadratic loss

Suppose that l inputs (�x1, y1), . . . , (�xl, yl) are given, where xi ∈ R
d are

the input patterns, and yi ∈ R are the related target values of our supervised
regression problem. The standard SVR model for 2-norm ε-insensitive loss
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function [Cristianini and Shawe-Taylor, 2000], that we denote QSVR, is:

min
	w,b,	ξ, 	ξ∗ ||�w||2 + c(�ξ′�ξ + �ξ∗

′ �ξ∗)
s.t.:

�w · �xi + b− yi ≤ ε + ξi, i = 1, . . . , l
yi − �w · �xi + b ≤ ε + ξ∗i , i = 1, . . . , l

(1)

where �w and b are the parameters of the linear regressor �w�x + b, ξi is the slack
variable associated to an over-estimate of the linear regressor over input �xi and
ξ∗i is the slack variable associated to an under-estimate on the same pattern; ε
determines the size of the approximation tube and c is the constant that controls
the tradeoff between the empirical error as measured by the loss function and
the regularization term. Note that non negativity constraints over �ξ and �ξ∗
components are redundant. The solution of (1) can be expressed in general
using a kernel function K(�x, �y) with f(�x) = 1

2

∑l
i=1(α

∗
i
+ − αi

+)K(�xi, �x) +
b+ where �α∗+, �α+ is the dual optimal solution and an optimal bias value b+

can be derived from the KKT conditions.
To weight the co-occurrence of errors corresponding to close patterns we

adopted the following formulation :

min
	w,b,	ξ, 	ξ∗ ||�w||2 + c(�ξ − �ξ∗)′S(�ξ − �ξ∗))

s.t.:
�w · �xi + b− yi ≤ ε + ξi, i = 1, . . . , l
yi − �w · �xi − b ≤ ε + ξ∗i , i = 1, . . . , l

(2)

where S is a positive definite matrix. Defining δi = ξi − ξ∗i we obtain:

min
	w,b,	δ

||�w||2 + c�δ′S�δ

s.t.:
�w · �xi + b− yi ≤ ε + δi + ξ∗i , i = 1, . . . , l
yi − �w · �xi + b ≤ ε− δi + ξi, i = 1, . . . , l

(3)

and since when one of the first constraints is active, the related ξ∗i is 0, and
viceversa, when one the second constraints is active, the related ξi is 0, we can
write:

min
	w,b,	δ

||�w||2 + c�δ′S�δ

s.t.:
�w · �xi + b− yi ≤ ε + δi, i = 1, . . . , l
yi − �w · �xi + b ≤ ε− δi, i = 1, . . . , l

(4)

Finally we obtain:

min
	w,b,	δ

||�w||2 + c�δ′S�δ

s.t.:
−ε ≤ �w · �xi + b− yi − δi ≤ ε, i = 1, . . . , l

(5)
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Figure 1. In our generalized quadratic loss, the error configuration generated by patterns 
xi

and 
xj is more expensive than the error configuration generated by patterns 
xk and 
xq . Here
we assume that Sij = Skq = s.

A solution of this problem is a function with the best tradeoff between its
smoothness and a uniform error on the training set. In addition, since we are
considering signed slack variables (�δ), we penalize errors on close patterns of
the same sign, preferring errors with opposite signs. In Figure 1 we give a
graphical exemplification about which type of error co-occurrence we prefer
to penalize. Let X be the l× d matrix of input patterns. Given problem (5) the
corresponding Lagrangian objective function is:

L = ||�w||2+c�δ′S�δ+�α′(X �w+b�1−�y−�δ−ε�1)+ �α∗′(�δ−X �w−b�1+�y−ε�1) (6)

where αi ≥ 0, α∗
i ≥ 0 for i = 1, . . . , l.

The Kuhn Tucker conditions for optimality are:

∂L
∂ 	w = 2�w + X ′(�α− �α∗) = 0⇒ �w = 1

2X ′( �α∗ − �α)
∂L
∂b = (�α− �α∗)′�1 = 0 ⇒ ( �α∗ − �α)′�1 = 0
∂L

∂	δ
= 2cS�δ − (�α− �α∗) = 0⇒ �δ = S−1(	α− 	α∗)

2c

(7)

if S is invertible. Supposing that S−1 exists, substituting (7) in (6) gives:

max	α, 	α∗( �α∗ − �α)�y − ε( �α∗ + �α)′�1− 1
2( �α∗ − �α)′ 12(K + S−1

c )( �α∗ − �α)
s.t.: ( �α∗ − �α)′�1 = 0, αi ≥ 0, α∗

i ≥ 0 i = 1, . . . , l
(8)

Notice that when S−1 exists, problem (8) is equivalent to a hard margin SVR
problem with a kernel matrix equal to 1

2(K + S−1

c ), while the regression
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function is defined over the feature space induced by kernel K. Actually, in
this case it is also possible to explicitly build a feature map. Let consider
the following mapping φ : R

d → R
d+l that, for all i ∈ [1, . . . , l], maps

�xi �→ φ(�xi): φ(�xi) = [�x′
i, (
√

S−1

c �ei)′]′ where �ei is the i-th vector of the canon-

ical base of R
l. It is not difficult to see that the kernel matrix obtained with this

transformation is equal to K + S−1

c . In the following we denote the overall
method with QLSVR.

3. Definition of the similarity matrix

The dual solution of problem (5) is based on the inversion of S. Note that
when all patterns are distinct points and S is generated by a Gaussian RBF
kernel then S is invertible ([Micchelli, 1998]). Under some experimental con-
ditions, however, a similarity matrix defined in this way may be ill-conditioned
and inversion can be problematic.

For this reason we also considered an exponential kernel eνK , defined by
eνK =

∑+∞
i=0

νi

i! K
i. A kernel matrix obtained by this formula is always in-

vertible and its inverse is (eνK)−1 = e−νK . Experimentally we never had
problems in computing the inverse of the exponential matrix.

A similarity matrix generated by an RBF kernel can be understood as a way
to take into account local similarity between patterns, where the amount of
locality is regulated by the width of the RBF function. The exponential kernel,
besides to guarantee the invertibility of the S matrix, has been proposed in the
context of discrete domains [Kondor and Lafferty, 2002], and it appears to be
particularly suited when the instance space is composed of structured objects,
such as sequences or trees.

4. Experiments

To measure the performance of the regression methods we used the average
absolute error (AAE = 1

l

∑m
i=1 |yi − f(�xi)|) and the average squared error

(ASE = 1
l

∑m
i=1(yi−f(�xi))2 ). Since the reported performances are averaged

across different shuffles, we also report their standard deviation computed as

σ =
√

1
n−1

∑n
i=1(Ei − μE)2, where n is the number of data shuffles, Ei is

the AAE (or ASE) error on the i-th shuffle and μE is the mean AAE (or ASE)
error on the shuffles set.

We tested the two regression methods on two datasets: the Abalone dataset
from the UCI repository and a QSPR problem involving alkanes, i.e. chem-
ical compounds represented as trees. For both datasets we report the results
obtained by SVR and QLSVR. We employed a modified version of SVMLight
5.0 [Joachims, 1998] enabled to work with a kernel matrix generated by Scilab
2.7 c©INRIA-ENPC.



214

The Abalone dataset comprises 3000 training patterns and 1177 test pat-
terns and the input patterns are normalized to zero mean and unit variance
coordinate-wise. We considered 10 independent shuffles of the Abalone dataset
and we calibrated the hyperparameters using a split of each original training
set. The calibration procedure is based on the first 2000 patterns for training
and on the last 1000 patterns for validation.

For the SVR algorithm we adopted a RBF kernel K(�x, �y) = e−γ||	x−	y||2 for
the input feature space. We applied on each shuffle of the dataset a calibration
process that involved a 5 × 5 mesh of powers of 10 starting from 10, 0.1 for c
and γ, while the ε parameter was increased by steps of size 0.3 starting from
0 up to 1.2. For each shuffle we selected the hyperparameters set that gave
the best performance in terms of ASE, we trained the SVR on the original
training set, and finally the obtained regressor was evaluated on the original
test problem.

For QLSVR we considered the same setting as the SVR and a similarity ma-
trix S generated by an RBF kernel with parameter γS . During the calibration
phase γS was varied from 4 to 24 by steps of size 5. Hyperparameters selection
and final evaluation were performed using the same procedure as adopted for
SVR.

We also considered a QSPR problem consisting in the prediction of the boil-
ing point for a group of acyclic hydrocarbons (alkanes). The dataset comprises
150 alkanes with up to 10 carbon atoms, each represented as a tree (for more
details, see [Bianucci et al., 2000; Bianucci et al., 2003]). The target values are
in the range [-164 , 174] in Celsius degrees.

In order to deal with trees as input instances, we have chosen the most pop-
ular and used Tree Kernel proposed in [Collins and Duffy, 2002]. It is based
on counting matching subtrees between two input trees.

For the calibration of SVR hyperparameters, we shuffled the 150 com-
pounds and we created 30 splits of 5 patterns each. The calibration involved a
set of 3 parameters: the SVR training error weight constant c, the Tree Kernel
downweighting factor λ and the SVR regression tube width ε. On the last 3
splits we applied a 3-fold cross validation that involved a 5×5 mesh of powers
of 10 starting from 10, 0.1 for c and

√
λ, while the ε parameter is increased by

steps of size 0.01 starting from 0 up to 0.04. We selected the parameter vector
that gave the median of the best AAE on the three splits and then we used these
parameters on 10 different splits of the original dataset to obtain the final test
results.

For QLSVR we considered the same setting as the SVR and a similarity
matrix generated by an exponential kernel (S = eνTK), since the exponential
kernel has been proposed in the context of discrete domains [Kondor and Laf-
ferty, 2002], such as set of trees. During the calibration phase ν was varied
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Table 1. Results for the Abalone dataset. We report also the unbiased standard deviation
measured on the 10 different shuffles of the dataset. SVRChu refers to [Chu et al., 2004].

Method AAE tr ASE tr AAE ts ASE ts

SVRChu - - 0.454±0.009 0.441±0.021

SVR 0.432±0.008 0.397±0.017 0.456±0.010 0.435±0.020

QLSVR 0.006±2.2E-4 3.4E-5±2.9E-6 0.461±0.009 0.424±0.019

from 0.5 to 0.65 by steps of size 0.015. Hyperparameters selection and final
evaluation were performed using the same procedure adopted for SVR.

The results for the Abalone dataset, both for the training set (tr) and the test
set (ts), are shown in Table 1 where we report also the results obtained for SVR
in [Chu et al., 2004]. From the experimental results it can be concluded that
the proposed approach and the SVR method give a similar result in terms of
the absolute mean error, while the quadratic loss produces an improved mean
squared error with a reduced standard deviation.

Table 2 reports the results obtained for the Alkanes dataset, including the
values for the hyperparameters, as returned by the calibration process described
above. Also in this case we got a similar result in terms of the absolute mean
error, while the quadratic loss produces an slightly improved mean squared
error, but with an increased standard deviation.

These results, however, should be considered very preliminary for the QLSVR
method, since the presence of an additional hyperparameter for the generation
of the similarity matrix S, as well as the possibility to use different methods
for its generation, require a more intensive set of experiments in order to get a
better coverage for S.

Table 2. Results for the alkanes dataset. We report also the unbiased standard deviation mea-
sured on the 10 different shuffles of the dataset.

Method Parameters AAE tr ASE tr AAE ts ASE ts

SVR
c = 1E5
λ = 0.25
ε = 0.02

1.68±0.03 3.19±0.08 3.82±0.97 30.27±32.08

QLSVR

c = 1E4
λ = 0.25
ε = 0.02
ν = 0.8

1.67±0.02 3.16±0.06 3.82±1.09 30.00± 32.63
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5. Conclusions

In this paper we proposed a generalized quadratic loss for regression prob-
lems that exploits the similarity of the input patterns. In fact, the proposed
generalized quadratic loss weights co-occurrence of errors on the basis of the
similarity of the corresponding input patterns. Moreover errors of similar pat-
terns of the same sign are discouraged. We derived a SVR formulation for the
proposed loss showing that if the similarity matrix is invertible the problem is
equivalent to a hard margin SVR problem with a kernel matrix which depends
also on the inverse of the similarity loss matrix. Experimental results on two
regression tasks seem to show an improvement in the performance.

A problem with this approach is the need to invert the similarity matrix and
how to define it in a meaningful way. Thus further study will be devoted to
these issues and to the extension of the framework to multiclass and ranking
problems. Finally, the robustness of the approach should be studied, both the-
oretically and empirically.
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Abstract.  This paper introduces a Flexible ICA approach to a novel blind sources 
separation problem. The proposed on line algorithm performs the separation 
after the convolutive mixing of post nonlinear convolutive mixtures. The 
Flexibility of the algorithm is given by the on line estimation of the score 
function performed by Spline Neurons. Experimental results are described to 
show the effectiveness of the proposed technique. 

Key Words: Blind Source Separation, Flexible ICA, Spline Adaptive function, Mutual 
Information.

1. Introduction 

The first studies about Independent Component Analysis aimed at 
resolving the famous Cocktail party problem first in static, then in 
reverberant environments. A critical issue is that linear mixing models are 
too unrealistic and “poor” in a lot of real situations. The approach to 
nonlinear convolutive problems are not too widely diffused until now.

Important theoretical results in nonlinear static ICA are in [Hyvarinen et 
al., 1999]. Several papers considers Post Nonlinear Mixing problem (PNL) 
in static [Taleb, 2002] and in convolutive [Milani et al., 2002][Zade et al., 
2002] environment but only few of them (see [Taleb et al., 1999][Hyvarinen 
et al., 1999]) explore the existence and uniqueness of the solution. Recent 
advances in BSS of nonlinear mixing models have been reviewed in [Jutten 
et al., 2003]. A growing interest is also in the so called Flexible ICA since it 
improves the quality of separation introducing a better pdf matching and 
allows a faster learning. 

Actually recent studies try to improve the severity of mixing models 
moving from single block nonlinear structures (convolutive or at least static) 
to multi block structures. In [Solazzi et al., 2004] sources are recovered from 
a PNL mixing followed by an instantaneous mixing; in [Vigliano et al., 
2004][Vigliano et al., 2004] the mixing environment is composed by a PNL 
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mixing block followed by a convolutive one. This paper explores the 
solution of the BSS problem in a novel, more severe, convolutive nonlinear 
mixing environment: the convolutive mixing  follows a  PNL convolutive 
mixing block.

2. The nonlinear issue 

This section introduces BSS problem in nonlinear environment. 
Considering an N vector of independent sources s[n] and a vector of signals 
x[n] received by a N-sensor array. The general formulation of the hidden 
mixing model is: 

,...,x s sn n n LF (1)

in which F  is a dynamic nonlinear distorting function. The solution of 
the BSS problem can be expressed as: y s sn n nH = G F . In 
instantaneous environments ICA recovers the original sources up to some 
trivial acceptable non-uniqueness: outputs can be scaled and delayed version 
of flipped inputs. Convolutive mixing environments add a stronger non-
uniqueness: the filtering indeterminacies. Convolutive mixtures are 
separable but applying channel-by-channel filters to the independent 
recovered signals, outputs are still independent.

This indeterminacy may be unacceptable since it can strongly distort the 
sources. In any case after separation it is possible to equalize the outputs 
producing acceptable results. According to these reasons filtering 
indeterminacy will no more considered in the rest of this paper.

In the more general convolutive nonlinear case (1), the issue of 
separating mixture with the only constraint of independent output signals 
and no other a priori assumption is affected by a strong non uniqueness 
[Jutten et al., 2003]. Several well known examples show that some maps, 
given independent inputs, produce independent outputs even with non 
diagonal Jacobian matrix. Independence constraint alone is not strong 
enough to recover original sources from generic nonlinear mixing 
environments [Taleb, 2002].

The main issue for generic nonlinear problems is to ensure the presence 
of conditions (in term of sources, mixing environment, recovering structure) 
granting at least theoretically the possibility to achieve the desired solution. 
In [Hyvarinen et al., 1999] authors proposed a constructive way (a Gram-
Schmidt like method) to obtain solutions of the separation problem in a static 



nonlinear mixing environment; in order to grant the uniqueness of the 
solutions some constraints have been applied to the mixing environment.

The idea introduced is general: adding some “soft” constraint to the 
problem (like a priori “trivial” assumptions) can produce the uniqueness of 
the solution. In this paper the a priori knowledge of the mixing model is 
exploited to design the recovery network: the so called “mirror” demixing 
model is used. 

3. The mixing-demixing structure 

This section explores the recovery of separated sources from nonlinear 
convolutive mixing; the a priori knowledge of the mixing model has been 
used to design the recovering network. The mixing environment modelled in 
this paper is represented in figure 1. In which A[k] and B[k] are N N  FIR 
matrices with respectively La and Lb filter taps and 

1 1 ,F p
T

N Nn f p n f p n  is the 1N vector of nonlinear 

distorting functions.
The closed form for mixing model is: 

x s B F A sn n n nF ;  it enlarges the set of mixing 
environments from which it is possible to recover separated signals. 
According to the uniqueness requirements expressed in the previous section 
the recovering structure mirrors the mixing model. The closed form for 
recovered outputs is: 

11

0 0

[ ] [ ] [ ] [ ]y x Z G W x Z G W x
WZ KK

h k

n n n n h k n k hG (2)

In which G[.] is the 1N  vector of nonlinear compensating functions, 
one for each channel; W[k] and Z[k] are N N  FIR matrices with Kw and Kz

filter taps.
Introducing the knowledge about the particular kind of mixing model is 

the key to avoid the strict non uniqueness of the solution; such assumption 
limits the weakness of the output independence condition reducing the 
cardinality of all possible independent output solutions; with this constraint 
the problem of recovery the original sources is not ill posed any more.   
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Figure 1. The Block diagram of the convolutive nonlinear mixing model 

The use of  FIR filter blocks grants the stability of the whole demixing 
structure.

4. The blind demixing algorithm and the network 
model

This section explores the blind demixing algorithm, the adaptive network 
and the network used to compensate the nonlinear distortion. The blind 
algorithm performs an on-line adaptive learning of the network parameters 

 on the base of the output independence estimation. The learning is 
realized minimizing the Mutual Information ,yI between outputs, with 

a steepest descent algorithm: 1 ,yk k I . The  
choice of a gradient based minimization procedure lead to terms like: 

log i

i

i

y i i i i
y i i i

y i

p y y y yp y y
p y

(3)

in which i iy are the so called Score Functions (SF). In this paper, the 
Spline Neurons are used to perform the on-line estimation of both Score 
Functions and nonlinear compensating functions (for a detail about Spline 
Neurons see [Solazzi et al., 2004][Uncini et al., 2004]). The most attractive 
property of Spline Neurons, as function estimator, is local learning: for each 
learning step only the four control points nearest to the training input are 
considered; no matter how many control points the Spline curve has.

The direct estimation of SF has been performed MSE approach ( [Taleb, 
2002] for details) but learning rules result still blind: 
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in which M is a matrix of coefficients, T is the vector local abscissa and 
 is the distance between the abscissas of adjacent control points.
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Figure 2. Feed Forward network used for the nonlinear blind deconvolution and separation. 

Figure 2 shows the network used to perform the separation, it is a 
cascade of blocks well described in literature and previously used to resolve 
more simple problems. Deriving the cost function ,yI with respect the 
learning parameter   results: 

0 11

, ,

log det 0 log log 0 log

y y

Z W
i

NM N

i i y i
n ii

I n n

g v n p y
(5)

In (5) the expected value of the signals has been replaced by the 
instantaneous value. The learning rules for the elements of the FIR matrices 
Z[k] and W[k], and for the control points Qg of the Spline neurons that 
compensate the nonlinear distorting functions are: 

-Z Z vT T
k yk k n k  (6) 
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 (7) 

1 1 1 10W Z x

Z v x

TT
k N N N N

T T

p

k g r g r g r g r n k

p n p n p k

 (8) 

in which M and T have the same sense as in (4).
One of the main problem using FIR is the length of filters: real 

convolutive problems or simply non trivial ones require a large number of 
filter taps; must be noted that learning time grows in an exponential way 
with the FIR length. 

5. Experimental results 

This section collects the experimental result of the proposed 
architectures. The algorithm is able to perform the separation of N-channel
mixtures but in order to make it possible the proper visualization of results 
only a pair of sources are considered: a male and a female voice speaking 
respectively “Le donne i cavalier l’arme” and “Riperdo una seconda volta 
quegli esigui beni”.

 a) b)

Figure 3. a) Joint pdf of input mixture; b) Joint pdf of output demixed signals. 

Figure 3 a) shows the pdf of mixed signal (the typical plot of the joint pdf 
of nonlinearly mixed sources) and figure 3 b) the ones of resulting signals 
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after a 1200 epochs training: the typical plot of the joint pdf of separated 
signals. The recovering network has 103 Spline control points and a 15 taps 
FIR matrixes. The nonlinear distortions applied in this test are: 

3
1 1 2 2 1 1 2 2, 2 ,0.5 tanh 7F f p f p p p p p .

The mixing environment applied are invertible mixing MIMO channels; 

with respect to figure 1: 
1 2 1 2
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Figure 4. Separation index ratio index during the training. 

The Separation index Sj (dB) introduced in [Shobben et al., 1999] measures 
the separation of the channel j-th.

2 2

, ,10logj j j j k
k j

S E y E y (9)

In (9) ,i jy  is the i-th output signal when only the j-th input signal is present 

while j  is the output channel corresponding to the j-input. The trend of this 
index (Figure 4) confirms the growing of separation during the training. 
Figure 4 shows that, after a first period, the algorithm performs the 
separation of the output signals. The reason of the starting transient has been 
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the number of blocks each of one separately have to converge to the 
optimum values. 

6. Conclusion 

This paper explores a novel mixing environment for which the BSS 
performed by ICA is granted. Preliminary result on separation assures a 
quite good sources recovery after the convolutive mixing of a PNL 
convolutive mixtures. Although a good separation level has been reached, 
we are carrying researches on improving it and on granting better output 
quality. The FIR recovering network performs the on line estimation of the 
score function by the Spline Neurons. Spline Neurons perform also the 
nonlinear compensating function estimation.
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Abstract We reconsider in the Algorithmic Inference framework the accuracy of a Boolean
function learnt from examples. This framework is specially suitable when the
Boolean function is learnt through a Support Vector Machine, since (i) we know
the number of support vectors really employed as an ancillary output of the learn-
ing procedure, and (ii) we can appreciate confidence intervals of misclassifying
probability exactly in function of the cardinality of these vectors. As a result we
obtain confidence intervals that are up to an order narrower than those supplied
in the literature, having a slight different meaning due to the different approach
they come from, but the same operational function. We numerically check the
covering of these intervals.

Keywords: support vector machines, confidence intervals, algorithmic inference, computa-
tional learning

1. Introduction

Support Vector Machines (SVM for short) [Cortes and Vapnik, 1995] rep-
resent an operational tool widely used by the Machine Learning community.
Per se a SVM is an n dimensional hyperplane committed to separate positive
from negative points of a linearly separable Cartesian space. The success of
these machines in comparison with analogous models such as a real-inputs
perceptron is due to the algorithm employed to learn them from examples that
performs very efficiently and relies on a well defined small subset of examples
that it manages in a symbolic way. Thus the algorithm plays the role of a spec-
imen of the computational learning theory [Valiant, 1984] allowing theoretical
forecasting of the future misclassifying error. This prevision however may
result very bad and consequently deprived of any operational consequence.
This is because we are generally obliged to broad approximations coming from
more or less sophisticated variants of the law of large numbers. In the paper
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we overcome this drawback working in the Algorithmic Inference framework
[Apolloni et al., 2003] with the benefit of computing relatively narrow confi-
dence intervals for the misclassifying probability that numerically prove not
exceedingly oversized.

2. Learning SVMs

In their basic version, SVMs are used to compute hypotheses in the class H
of hyperplanes in R

n, for fixed n ∈ N. Given a sample {x1, . . . ,xm} ∈ R
mn

with associated labels {y1, . . . , ym} ∈ {−1, 1}m, the related classification
problem lies in finding a separating hyperplane, i.e. an h ∈ H such that all
the points with a given label belong to one of the two half-spaces determined
by h.

In order to obtain such a h, a SVM computes first the solution {α∗
1, . . . , α

∗
m}

of the constrained optimization problem

max
α1,...,αm

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjxi · xj (1)

m∑
i=1

αiyi = 0 (2)

αi ≥ 0 i = 1, . . . , m , (3)

where · denotes the standard dot product in R
n, and then returns a hyperplane

(called separating hyperplane) whose equation is w · x + b = 0, where

w =
m∑

i=1

α∗
i yixi (4)

b = yi −w · xi for i such that α∗
i > 0 . (5)

In the case of a separable sample (i.e. a sample for which the existence of at
least a separating hyperplane is guaranteed), this algorithm produces a separat-
ing hyperplane with optimal margin, i.e. a hyperplane maximizing its minimal
distance with the sample points. Moreover, typically only a few components
of {α∗

1, . . . , α
∗
m} are different from zero, so that the hypothesis depends on a

small subset of the available examples (whose elements are denoted support
vectors or SV).

A variant of this algorithm, known as soft-margin classifier [Schölkopf et al.,
1999], produces hypotheses for which the separability requirement is relaxed,
introducing a parameter μ whose value represents an upper bound to the frac-
tion of sample classification errors and a lower bound to the fraction of points
that are allowed to have a distance less or equal the margin. The corresponding
optimization problem is essentially unchanged, with the sole exception of (3),
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which now becomes

0 ≤ αi ≤
1
m

i = 1, . . . , m

m∑
i=1

αi ≥ μ.
(3′)

Analogously, the separating hyperplane equation is still computed through (4-
5), though the latter equation needs to be computed on indices i such that
0 < α∗

i < 1
m .

3. The associated Algorithmic Inference problem

We assume the following statement of the general problem of learning a
Boolean function from examples.

Definition 1 For a given space X and fixed m, a labeled sample is a set

zm = {(xi, bi), i = 1, . . . , m} , (6)

where xi ∈ X and bi are Boolean variables. If we assume that, given a con-
cept class C, for every M and every (labeled) population zM a c exists in C
such that zm+M = {(Xi, c(Xi)), i = 1, . . . , m + M}, then we call learning
algorithm a total function A : {zm} �→ H that

for any zm

for any pair of accuracy parameters ε, δ ∈ [0, 1]

computes another function, that we denote as hypothesis h, such that the con-
fidence interval (0, ε) of the measure Uc÷h of the symmetric difference c ÷ h
between the two functions has at least confidence 1− δ. In formulas:

P(Uc÷h ≤ ε) ≥ 1− δ. (7)

We can bind the Uc÷h distribution law through the following theorem.

Theorem 2 [Apolloni and Malchiodi, 2001] For a space X and any proba-
bility measure P on it, assume we are given

concept classes C and H on X;

a labeled sample Zm drawn from X× {0, 1};

a fairly strongly surjective function A : {zm} �→ H

In the case where for any zm and any infinite suffix zM of it a c ∈ C exists
computing the example labels of the whole sequence, consider the family of
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random sets {c ∈ C : zm+M = {(xi, c(xi)), i = 1, . . . , m + M} for any
specification zM of ZM}. Denote h = A(zm) and Uc÷h the random variable
given by the probability measure of c÷h and FUc÷h

its cumulative distribution
function. For a given zm, if h has detail D(C,H)h

and misclassifies th points of
zm, then for each ε ∈ (0, 1),

m∑
i=th+1

(
m

i

)
εi(1−ε)m−i ≥ FUc÷h

(ε) ≥
m∑

i=D(C,H)h
+th

(
m

i

)
εi(1−ε)m−i (8)

Fairly strong surjectivity is a usual regularity condition [Apolloni et al., 2003],
while D(C,H)h

is the key parameter of the Algorithmic Inference approach to
learning. The general idea is that it counts the number of meaningful exam-
ples within a sample, i.e. those examples that prevent A from computing a
hypothesis h′ with a wider mistake region c ÷ h′. In greater detail, a sentry
function [Apolloni and Chiaravalli, 1997] attributes points from X to each con-
cept c in order to discriminate it within a class C. Call these points frontier of
the concept. The frontier size of the most expensive concept attributed by the
least efficient sentry function S, i.e. the quantity DC = supS,c #S(c), is called
detail of C. Moving to symmetric differences, for another set H of concepts let
us consider the class of symmetric differences c ÷ H = {c ÷ h ∀h ∈ H} for
any c belonging to C. The detail of a concept class H w.r.t. c is the quantity
Dc,H = Dc÷H and the overall detail of the class C ÷ H = ∪c∈Cc ÷ H is the
quantity DC,H = supc∈C{Dc,H}. Finally, we denote D(C,H)h

the restriction of
DC,H to h, i.e. the number of sentry points within the above sup computation
to sentinel exactly h.

Analogous results in the PAC learning approach are based on a dual parame-
ter constituted by the Vapnik-Chervonenkis dimension dVC(C) (for short, VC
dimension) of the concept class C [Blumer et al., 1989] counting the number
of concepts within C necessary to discriminate all subsets of points within a
sample.

A link for comparing the two families of results is represented by the fol-
lowing theorem.

Theorem 3 For any concept class C

DC < dVC(C) + 1 . (9)

Finally, we frame the SVM learning problem in the above results thanks to
the following lemma.

Lemma 4 Let us denote by C the concept class of hyperlanes on a given space
X and by σ = {x1, . . . , xs} a minimal set of support vectors of a hyperplane
h (i.e. σ is a support vector set but, whatever i is, no σ\{xi} does the same).
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Then, for whatever goal hyperplane c separating the above set accordingly
with h, there exists a sentry function S on C÷H and a subset of σ of cardinality
at most s− 1 sentinelling c÷ h according to S.

Proof: To identify a hyperplane in an n-dimensional Euclidean space we need
to put n non aligned points into a linear equations’ system , n+1 if these points
are at a fixed (either negative or positive) distance. This is also the maximum
number of support vector required by a SVM. We may substitute one or more
points with direct linear constraints on the hyperplane coefficients when the
topology of the support vectors allows it. Sentinelling the expansion of the
simmetric difference c ÷ h results in forbidding any rotation of h into a h′
pivoted along the intersection of c with h. The membership of this intersection
to h’ adds from 1 to n − 1 linear relations on its coefficients, so that at most
#σ − 1 points from σ are necessary, possibly in conjunction with the direct
linear constraints on the coefficients to fix h′ to h.

�
In synthesis, our approach focuses on a probabilistic description of the un-

certainty region [Shawe-Taylor and Cristianini, 2004], rather than on its geo-
metric approximation [Muselli, 2001].

We must remark that in principle the constraint for h’ to contain the in-
tersection of h with c gives rise to n − 1 linear relations on h’ coefficients.
These relations may result effective in a shorter number if linear relations oc-
cur between them deriving from linear relations, in own turn, between h and c
coefficients. Now, as the former are functions of the sampled points, no way
exists for computing coefficients that result exactly in linear relation with those
of the unknown (future) c if the sample space is continuous (and its probabil-
ity distribution do the same). We really realize these linear relations if either
the sample space is discrete or the algorithm computing the hyperplane is so
approximate to work on an actually discretised search space.

Thus we have the following fact.

Fact 5 The number of sentry points of separating hyperplanes computed
through support vector machines ranges from 1 to the minimal number of in-
volved support vectors minus one, depending on the approximation with which
either sample coordinates are stored or hyperplanes are computed.

4. Confidence intervals for the learning error

Definition 6 Given a random variable with parameter L 1 and a real num-
ber 0 ≤ δ ≤ 1, (li, ls) is called a 1− δ confidence interval for L if

P(li < L < ls) ≥ 1− δ (10)

The quantity δ is called the confidence interval’s level.
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Equation (8) allows us to compute a confidence interval I = (u1, u2) at level
δ for Uc÷h directly from the inequality

FUc÷h
(u2)− FUc÷h

(u1) ≥ 1− δ ; (11)

therefore, getting

ΔF =
m∑

i=DC,H+th

(
m

i

)
ui

2(1− u2)m−i −
m∑

i=th+1

(
m

i

)
ui

1(1− u1)m−i

as an upper bound to FUc÷h
(u2) − FUc÷h

(u1), (11) can be solved by divid-
ing the probability measure outside I in two equal parts in order to obtain a
two-sided interval symmetric in the tail probabilities. In this way we obtain a
solution to the interval confidence problem from:

m∑
i=DC,H+th

(
m

i

)
ui

2(1− u2)m−i = 1− δ

2
(12)

m∑
i=th+1

(
m

i

)
ui

1(1− u1)m−i =
δ

2
(13)

Let us consider the companion error probability associated to a hypothesis
h through the following definition.

Definition 7 For a given space X, a distribution probability P on it, and
fixed m, consider a conept c and a random labeled sample

Zm = {(Xi, Bi), i = 1, . . . , m}

where Xi are distributed according to P and Bi are Bernoullian variables such
that bi = c(xi) for each pair of specifications of Xi and Bi respectively. For
any learning algorithm A denote by V (Zm) the random variable measuring
c ÷ A(Zm) according to P and ν(Zm) the corresponding frequency of clas-
sification errors computed from the sample according to A (called empirical
error).

We refer to the commonly used confidence intervals stated by Vapnik and Cher-
vonenkis since the late ’70 for the risk V (Zm). Analogous intervals based on
Rademaker complexity prove either not applicable or meaningless in the gen-
eral cases we are considering [Bartlett and Mendelson, 2002].
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Figure 1. Comparison between two-sided 0.9 confidence intervals for SVM classification
error. t: number of misclassified sample points; d: VC dimension; u: confidence interval
extremes; m: sample size. Gray surfaces: VC bounds. Black surfaces: proposed bounds.

Theorem 8 [Vapnik, 1982] Let C be a Boolean concept class of bounded
VC dimension dVC = d. With the same notations of Definition 7, the event

ν(Zm)− 2

√
d
(
log 2m

d + 1
)
− log δ

9

m
< V (Zm)

< ν(Zm) + 2

√
d
(
log 2m

d + 1
)
− log δ

9

m
(14)

has probability 1− δ.

5. Numerical experiments

To appreciate the numerical benefit of our approach, or at least a lower
bound to it, in the following example we artificially fill the gap between detail
and VC dimension by: 1) referring to both complexity indices and empirical
error ν constant with learnt hypotheses and 2) assuming DC,C = dVC(C) = d
(≤ n + 1). Figure 1 compares two-sided confidence intervals in the two ap-
proaches for a set of values of the number of mislabelled points and of support
vectors. Following the previous remark, we compute the former quantity in
(12) and (13) as mν. For a sample of 100, 1000 and 1000000 elements respec-
tively, the three graphs show the limits of the 0.9-confidence intervals drawn
using both VC (external surfaces) and Detail (internal surfaces) bounds. More-
over, to appreciate the differences even better, in Figure 2 we draw a section
with d = 4 in function of the number of misclassified points. The figures show
that:

Detail confidence intervals are always more accurate than VC’s; this
benefit accounts for a narrowing of one order at the smallest sample size,
while tends to disappear when the sample size increases.
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Figure 2. Same comparison as in Figure 1 with d = 4.

Detail confidence intervals are consistent, that is they are always con-
tained in [0, 1];

Finally, in Figure 3 we check the coverage of the above intervals through a
huge set of pairs of statistics and error probabilities Perr = uc÷h sampled from
learning instances on points uniformly distributed in the unitary hypercube and
variously separated by random coefficients hyperplanes. Namely in Figure 3(a)
we considered different sample sizes for the number of support vectors fixed to
3, and in Figure 3(b) we conversely maintained the sample size fixed to 100 and
considered different numbers νh of support vectors as upper bound to D(C,H)h

plus 1. The slight oversize of the intervals on each abscissa is connected with
Fact 5. Indeed from the graph in Figure 4(a) of the percentage of experiments
trespassing the confidence intervals for any abscissa with the accuracy μ of
the learning algorithm (see (3′)), we see that the design parameter δ = 0.1 is
stably reached with the increase of this parameter. Note that for μ > 0 the
algorithm works on a superset of the support vectors, thus we rely on the upper
bound n (the dimension of the sample space) to their cardinality. Finally, in
Figure 4(b) we draw the same confidence region in case the SVM tries to divide
two regions non linearly separable. In this case we use a parabolic surface for
dividing the hypercube points, hence to label the sample as well. This may
induce some mislabeling by the hypothesis even on the sample points. We
afford this case just by adding the number of support vectors and the number
of mislabelled sample points in the abscissa of the graph and using a parameter
μ = 0.2. We have the same confidence intervals in correspondence of the
abscissas and uc÷h values well contained in these intervals as well.

Notes

1. See [Apolloni et al., 2003] for a thorough explanation of this definition and of the use of a random
variable as parameter.
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Figure 3. Course of misclassification probability with the parameters of the learning problem:
(a) probability vs. sample size, (b) probability vs. νh.
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Figure 4. (a) Course of the experimental confidence level with algorithm approximation. (b)
Same picture as in Figure 3(b) for non linearly separable instances. Abscissa: νh plus number
of wrongly classified sample points th.
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Abstract We revisit the linear regression problem in terms of a computational learning
problem whose task is to identify a confidence region for a continuous function
belonging in particular to the straight lines family. Within the Algorithmic In-
ference framework this function is deputed to explain a relation between pairs of
variables that are observed through a limited sample. Hence it is a random item
within the above family and we look for a partial order relation allowing us to
state a cumulative distribution function over the function specifications, hence
a pair of quantiles identifying the confidence region. The regions we compute
in this way is theoretically and numerically attested to entirely contain the goal
function with a given confidence. Its shape is quite different from the analogous
region obtained through conventional methods as a collation of confidence inter-
vals found for the expected value of the dependent variable as a function of the
independent one.

Keywords: linear regression, confidence intervals, algorithmic inference

1. Introduction

We focus on the classical model of linear regression [Morrison, 1967] which
we formalize as follows

Definition 1 Given the space X × Y ⊆ R
∗ and a sample of size m whose

general form is

zm = {(xi, yi) : xi ∈ X, yi ∈ Y, i = 1, . . . , m} ⊆ (X× Y)m (1)

we assume that a function c exists within a class C such that, for any suffix
zM of zm (i.e. any continuation of the observed data), and for any (xi, yi)
belonging to the concatenated sequence zm+M

yi = c(xi) + εi, i = 1, . . . , m + M (2)
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where the εi values are specifications of a set of corresponding random vari-
ables Ei (modeling an additive noise).

The easiest and best known instance of regression problem is the following

X and Y are subsets of R;

the concept class is C = {a′ + bx : a′, b ∈ R};
the random variables Ei are assumed to be independent, identically dis-
tributed and with null mean.

To facilitate the future computations, we adopt the special representation of a
line whose X coordinate is centered around x = 1

m

∑m
i=1 xi, hence relying on

the model
yi = a + b(xi − x) + εi, i = 1, . . . , m (3)

This is without loss of generality, since it corresponds to shift the origin of
the X axis by x in the framework where c is represented through a′ + bx with
a′ = a− bx.

2. A twisting argument for regression lines

Since many different zM sequences (call them populations) may constitute
suffixes of the observed zm (in the hypothesis that a same phenomenon under-
lies both sequences) we have that a and b in (3) represent specifications of ran-
dom variables A and B respectively, whose distribution laws we will discover
in the frame of the Algorithmic Inference [Apolloni et al., 2003]. A twisting
argument is the logical tool we will use for relating sample properties with
population parameters through a particular mapping called sampling mecha-
nism. The mapping is stated from a standard random variable to the one we are
studying through a function involving the parameters we are questioning on. In
our case exactly (3) will constitute a sampling mechanism mapping from E to
Y having the X specifications for given. After some elementary algebra on (3)
we discover the following logical implications constituting twisting arguments
for A and B

(a ≤ ã) ⇔
(

m∑
i=1

yi ≤
m∑

i=1

ỹi

)
(4)

(
b ≤ b̃

)
⇔
(

m∑
i=1

yi (xi − x) ≤
m∑

i=1

ỹi (xi − x)

)
(5)

where ỹi corresponds to the value we would observe in place of yi with the
tilded parameters. These relations start from a definite order relation on both
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statistics and parameter values. Hence, it is possible to reverse them in proba-
bility terms. Namely, introducing the variables SE =

∑m
i=1 Ei =

∑m
i=1(Yi −

ma), for any a ∈ R, and S′
E =

∑m
i=1 Ei(xi − x) =

∑m
i=1 Yi(xi − x) −

b
∑m

i=1(xi − x)2, for any b ∈ R, we obtain the cumulative distribution func-
tion (c.d.f.) of the parameters A and B from the distribution of E:

FA(ã) = 1− FSE

(
m∑

i=1

yi −mã

)
(6)

FB (̃b) = 1− FS′
E

(
m∑

i=1

yi(xi − x)− b̃
m∑

i=1

(xi − x)2
)

(7)

In order to state an analogous relation involving the entire regression line
we need to introduce an order relation also in the lines’ family. We do this
through a contour lines’ family {Dk} constituted by the envelope of: i) either
a set of straight lines y = a∗ + b∗(x− x) such that b∗ ≥ 0 and a∗ + b∗ equals
a thresholding parameter k, and ii) a set of straight lines such that b∗ < 0 and
a∗− b∗ = k. Each Dk partitions the family line in a set Ik and its complement
such that: a) each line � ∈ Ik lies completely under Dk, and b) for each k′ < k
contour Dk′ lies completely under Dk. Fig. 1(a) gives a qualitative picture of
Ik. We will consider it as the intersection of two regions bounded either before
x (call it I l

k) or after x (call it Ir
k).

First of all we notice that the right part after x of a line y = a′ + b′(x− x)
lies completely under the line y = a+b(x−x) if and only if both parameters a′
and b′ are less than or equal to the corresponding parameters a and b. Namely

(
a ≤ ã ∧ b ≤ b̃

)
⇔
(
a + b(x− x) ≤ ã + b̃(x− x), ∀x ≥ x

)
(8)

Moreover, we recognize that parameters a and b of a line � have a sum less
than or equal to k̃ if and only if two numbers a′ and b′ exist with a sum less
than or equal to k̃ as well which are parameters of a line lying over � for each
x ≥ x. I.e.

(
∃a′, b′ s.t. (a′ + b′ ≤ k̃) ∧

(
a + b (x− x) ≤ a′ + b′ (x− x) ∀x ≥ x

))
⇔
(
a + b ≤ k̃

)
(9)
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Following (4) and (5) we may also state:(
a + b ≤ k̃

)
⇔
[
∃a′, b′ such that

(
a′ + b′ ≤ k̃

)
∧
(
ỹi = a′ + b′ (xi − x) + εi ∀i = 1, . . . , m

)
∧⎛⎜⎜⎜⎜⎝

m∑
i=1

yi + m

m∑
i=1

yi(xi − x)

m∑
i=1

(xi − x)2
≤

m∑
i=1

ỹi + m

m∑
i=1

ỹi(xi − x)

m∑
i=1

(xi − x)2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (10)

since the last brackets read (ma + mb ≤ ma′ + mb′).
Joining (9) and (10) we have:

for each a, b such that a + b ≤ k̃ it exists a′, b′ ≤ k̃ such that[(
ỹi = a′ + b′ (xi − x) + εi ∀i = 1, . . . , m

)

∧

⎛⎜⎜⎜⎜⎝
m∑

i=1

yi + m

m∑
i=1

yi(xi − x)

m∑
i=1

(xi − x)2
≤

m∑
i=1

ỹi + m

m∑
i=1

ỹi(xi − x)

m∑
i=1

(xi − x)2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

⇔
[(

a + b(x− x) ≤ a′ + b′(x− x), ∀x ≥ x
)]

(11)

For k̆ ∈ R we can therefore consider the ceiling family

Dr
k̆

= {(ar, br)}k̆ =
{

arg supr
{

(a′, b′) s.t. a′ + b′ ≤ k̆
}}

(12)

representing the top contour of Ir
k̆
, where arg supr means any pair (ar, br),

with ar +br = k̆ of parameters of a line � such that no line y = a′+b′(x−x) ∈
Ir
k̆

lies even partially over the envelope of � when x ≥ x. Thus the membership
of line y = a′+b′(x−x) to Ir

k̆
is checked for a suitable element of Dr

k̆
through

the implication:

(a + b(x− x) ≤ ar + br(x− x))⇔⎛⎜⎜⎜⎜⎝
m∑

i=1

yi + m

m∑
i=1

yi(xi − x)

m∑
i=1

(xi − x)2
≤

m∑
i=1

ỹi + m

m∑
i=1

ỹi(xi − x)

m∑
i=1

(xi − x)2

⎞⎟⎟⎟⎟⎠ (13)
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with ỹi = ar + br(xi−x) + εi. Therefore if we introduce the random variable

S′′
E = SE + S′

E
m

m∑
i=1

(xi − x)2
=

m∑
i=1

Ei

⎛⎜⎜⎜⎜⎝1 + m
xi − x

m∑
i=1

(xi − x)2

⎞⎟⎟⎟⎟⎠
we obtain the following distribution function

F̃Ir
K

(Ir
k̆
) = P (Ir

K ⊆ Ir
k̆
) =

= 1− FS′′
E

⎛⎜⎜⎜⎜⎝
m∑

i=1

yi −mar + m

m∑
i=1

yi(xi − x)

m∑
i=1

(xi − x)2
−mbr

⎞⎟⎟⎟⎟⎠ (14)

Analogous considerations can be done for the c.d.f. of the random variable
I l
K , corresponding to x < x, whose c.d.f. reads:

F̃Il
K

(I l
k̆
) = P (I l

K ⊆ I l
k̆
) =

= 1− FS′′
E

⎛⎜⎜⎜⎜⎝
m∑

i=1

yi −mal −m

m∑
i=1

yi(xi − x)

m∑
i=1

(xi − x)2
+ mbl

⎞⎟⎟⎟⎟⎠ (15)

The latter cumulative distribution function in (15) still refers to the variable
S′′

E if E is symmetric around 0, and SE and S′
E are linearly independent. We

easily verify this property when the covariance Cov[SE, S′
E] = 0 and assume

henceforth this property.
Regarding the distribution of observed points, since Y = A+B(x−x)+E,

we may set a′ = a + ε and repeat the previous passages, obtaining an equality
similar to (14), substituting the statistic S′′

E with S′′′
E = S′′

E + mE.
With these c.d.f. we are looking for a region G where to find the regression

line L with a given confidence γ [Wilks, 1962]. Namely

P (L ⊆ G) = 1− γ (16)

Now, read the second member of (14) and (15) respectively as (1−FS′′
E
(−Δa−

Δb)) and 1− (1−FS′′
E
(−Δa+Δb)), then get−Δa−Δb = z′′γ/4 and−Δa+
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Δb = z′′γ/4 as the solutions of the equations

1− FS′′
E
(−Δa−Δb) = 1− γ

4
1− FS′′

E
(−Δa + Δb) = 1− γ

4

(17)

where z′′α is the α quantile of S′′
E. In the hypothesis that the corresponding ran-

dom variables ΔA and ΔB are independent and Gaussian (which holds for in-
stance when Ei are both independent and Gaussian), we have that−ΔA−ΔB
and −ΔA + ΔB are also independent variables. In this case the inequalities

−ΔA−ΔB ≥ z′′γ/4

−ΔA + ΔB ≥ z′′γ/4

(18)

define a (1− γ/4)2 � 1− γ/2 (for small γ) upper bounded confidence region
Ik like the one in Fig. 1(a) for the line A + B(x− x), provided we make this
region definite by fixing an interval for one of the two addends, for instance
for a′, in (12). Actually, region in Fig. 1(a) has been drawn as the span of
all straight lines satisfying (18) with 0 ≤ ΔA < (sE − zγ/2)/m, where zα

is the α quantile of SE, and all parallels to the previous ones for ΔA < 0 to
fill Dk functionality. Putting any negative infinitely low value of ΔA in (18)
would allow any infinitely low and any infinitely high value of ΔB, thus filling
the plane and losing any operational meaning to the filled region. Vice versa,
we get the analogous lower bounded region for the line A + B(x− x) in Fig.
1(b) having −Δa − Δb = z′′1−γ/4 and −Δa + Δb = z′′1−γ/4, as solutions of
analogous equations analogous to (17-18), with (sE − z1−γ/2)/m < ΔA < 0,
as constraints on the spanning line.

The intersection between the two regions removes exactly the additional
parallel straight lines (see Fig. 1(c)), maintaining all lines satisfying the rela-
tions

−z′′1−γ/4 + |ΔA| ≤ ΔB ≤ z′′1−γ/4 − |ΔA| (19)

(sE − z1−γ/2)/m ≤ ΔA ≤ (sE − zγ/2)/m (20)

which jointly insure a 1 − γ two-side confidence interval I for A centered
around

∑m
i=1 yi/m, and a global (1 − γ/2) − 2γ/4 = 1 − γ (for small γ)

two-side confidence region having the shape of the double cone in Fig. 1(c),
for the entire regression line.

3. Numerical examples

We apply the learning method to two distributions of the noise E: i) the usual
normal distribution N(0, σ), and ii) the symmetric exponential one [Feller,
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Figure 1. Upper (a) and lower (b) bound of the algorithmic confidence region (c) for the
straight line in the linear model (3).

1960] for which conventional methods are not able to supply specific solutions.
Fig. 2(a) shows for the former the 90% confidence regions obtained for regres-
sion lines and sampled points using the previous formulas, with reference to
a 20-sized sample of observations having set as reference value a = b = 15
and σ = 20 for generating them. Due to the Ei distribution law, the vari-

ables SE
m , S′

E,
S′′

E
m and

S′′′
E
m follow a Gaussian distribution of null mean and

variance σ2

m , Sxxσ2,

(
1
m +

1
Sxx

)
σ2, and

(
1 + 1

m +
1

Sxx

)
σ2, respectively,

where Sxx =
∑m

i=1(xi − x)2. This allows us to compute the quantiles z”0.975

and z0.95 as referred to the straight line. With a slight extension of the above ar-
guments we also draw the confidence region for the distribution of the observed
points. In the figure we also compare these regions and the corresponding ones
obtained using standard statistical theory [Sen and Srivastava, 1990]. While
from a mere computational perspective the two regression methods are both
quadratic in the sample size, the comparison is somehow improper since E[Y ]
stands for a fixed line a + b(x− x) originating any pair (X, Y ) with the addi-
tion of noise Ei. In any case we expect to find a straight line that explains our
past and future observation pairs. As it concerns the shape of the confidence
regions, we note that those coming from our inferential framework include al-
most completely the other corresponding ones. Is this broadening necessary?
To check it we extend the numerical experiments in Fig. 2(a). Namely, for
a fixed sample {x1, . . . , xm} and a same pair of statistics s1 =

∑m
i=1 yi and

s2 =
∑m

i=1 yi(xi−x)∑m
i=1(xi−x)2

, hence for the same confidence regions, we got 100 samples

{(xi, yi), i = 1, . . . , 20} as follows. We draw 100 samples {εi, i = 1, . . . , 20}
from a Gaussian variable of 0 mean and standard deviation 20, as specified
for Ei; then, starting from (3), rereading s1 =

∑m
i=1 yi = a +

∑m
i=1 εi and

s2 =
∑m

i=1 yi(xi − x) = b +
∑m

i=1 εi(xi − x)/
∑m

i=1(xi − x)2, we com-
pute a and b for each sample, hence the yi’s. Fig. 2(b) shows that the whole
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Figure 2. Algorithmic confidence region for a regression line and points scattering with
Gaussian drifts with μ = 0 and σ = 20 around the reference line y = 15 + 15(x − x), with
X uniform in [0, 20]. Bold line: reference line. Dark shadow region: 90% confidence region
for the regression line. Light shadow region: 90% confidence region for random points. Dark
curves: delimiters of 90% standard confidence region for the regression line. Light curves: de-
limiters of 90% standard confidence region for points. (b) Coverage of the algorithmic inference
regions in (a) by 100 reference lines having the same confidence regions.

90% confidence region computed from these statistics is spanned by the lines.
Idem for the generated points; however we avoided plotting them for sake of
readability.

In Fig. 3(b) we report analogous confidence regions when the shifts Ei

are exponentially spread around the origin as in Fig. 3(a) according to the
distribution

fEi(e; λ) =
λ

2
e−λ|e|, i = 1, . . . , m (21)

The distribution of the relevant variables have still a close though complex
form. In this case SE has the following distribution density

fSE
(ε; λ) =

dm(λ|ε|)
(m− 1)!2m−1

λ

2
e−λ|ε| (22)

where the functional coefficient dm is defined through the following recurrent
relations

di(x) = (2(i− 1)− 1)di−1(x) + x2di−2(x) ∀i ≥ 3 (23)

d2(x) = x + 1 (24)

d1(x) = 1 (25)

Then the procedure works in perfect analogy with what has been done in the
previous example. In particular, since the moment generating function of stan-
dardized normal distribution and standardized symmetric exponential one al-
most coincide around the zero of their argument, the condition on Δa+Δb and
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Figure 3. (a) Graph of the symmetric exponential density for measurement errors, for λ =
0.0513. (b) Algorithmic confidence region for a regression line and points scattering with the
above distribution law around the reference line y = 5 + 5(x − x), with X uniform in [0, 20].
Same notation as in Fig. 2(a).

on Δa − Δb is satisfied also in this case. In Fig. 3(b) we draw also standard
regions obtained for the same data under the usual Gaussian approximation
on Ei. We have a similar shape difference as in the previous example and the
benefit of working with exact solutions in our approach.

As a conclusion, learning continuous functions may be an affordable task
that can be dealt with through exact methods. The key point is to identify
meaningful statistics and frame them in a suitable statistical framework, that
in the present case is constituted by the Algorithmic Inference. In essence,
this framework constitutes a proper logical cadre to manage confidence in-
terval computations underlying the learning problem as much as the classical
Kolmogorov framework is well suited to decide hypothesis tests. It is exactly
the shift from the latter to the former that renders the learning of continuous
function a feasible task.
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Abstract Kernel Methods are algorithms that implicitly perform a nonlinear mapping of
the input data to a high dimensional Feature Space. In this paper, we present
a novel Kernel Method, Kernel K-Means for clustering problems. Unlike other
popular clustering algorithms that yield piecewise linear borders among data,
Kernel K-Means allows to get nonlinear separation surfaces in the data. Ker-
nel K-Means compares better with popular clustering algorithms, on a synthetic
dataset and two UCI real data benchmarks.

Keywords: Kernel Methods, Clustering, K-Means

1. Introduction

Kernel Methods [Cristianini and Shawe-Taylor, 2000] are algorithms that
implicitly perform, by replacing the inner product with an appropriate Mercer
Kernel, a nonlinear mapping of the input data to a high dimensional Feature
Space. Powerful supervised Kernel Methods have been developed to solve
classification and regression problems. As far as we know no effective Kernel
Methods to solve clustering problems have been developed. In this paper, we
present an effective Kernel Method, Kernel K-Means for clustering problems.
Kernel K-Means maps data from the Input Space to a high dimensional Fea-
ture Space using a Mercer Kernel. Then it considers K centers and computes
for each center the smallest ball that encloses the data that are closest. Kernel
K-Means uses a K-Means-like strategy, i.e. it moves repeatedly the centers,
computing for each center the smallest ball, until any center changes. Unlike
other popular clustering algorithms that yield piecewise linear borders among
data, Kernel K-Means allows to get nonlinear separation surfaces in the data.
This is the main quality of the algorithm. The plan of the paper is as follows.
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In Section 2 we review K-Means that inspired Kernel K-Means and the Sup-
port Vector Clustering, the basic step of the Kernel K-Means; in Section 3 we
present the Kernel K-Means algorithm; in Section 4 some experimental results
are reported; finally some conclusions are drawn in Section 5.

2. Preliminaries

Let D = (x1, x2, . . . , xm) be a data set with vectors xi ∈ IRN . We call
codebook the set W = (w1, w2, . . . , wk−1, wk) where each element wc ∈
IRN and k � m. The Voronoi Set (Vc) of the codevector wc is the set of all
vectors in D for which wc is the nearest vector. The most popular clustering
technique is K-Means [Lloyd, 1982]. K-Means works by repeatedly moving
all codevectors to the arithmetic mean of their Voronoi sets. K-Means consists
of the following steps:

1 Initialize the codebook W to contain K with vectors chosen randomly
from the training set D.

2 Compute for each codevector wi ∈ W its Voronoi Set Vi.

3 Move each codevector wi to the mean of its Voronoi Set.

4 Go to step 2 if any codevector, in the step 3, wi has been changed.

K-Means is an Expectation-Maximization (EM) algorithm [Dempster et al.,
1977].
Since each EM algorithm is convergent, the convergence of the K-Means algo-
rithm is guaranteed.
Support Vector Clustering (SVC) [Ben-Hur et al., 2001], called also one-class
SVM, is a unsupervised Kernel Method based on support vector description of
a data set. In Feature Space, SVC computes the smallest sphere that encloses
the image of the input data. Let D = (xi ∈ IRN , i = 1, 2, . . . , m) ⊆ X ,
with X ⊆ IRN . We project the data xi in some Feature Space F using a non-
linear transformation Φ : X → F . Then we look for the smallest sphere of
radius R, in the Feature Space, that encloses the data projections Φ(xi). This
is described by the constraints:

‖Φ(xj)− a‖2 ≤ R2 j = 1 . . . m,

where ‖ · ‖ is the Euclidean norm and a is the center of the sphere.
The constraints can be relaxed by using slack variables ξj :

‖Φ(xj)− a‖2 ≤ R2 + ξj
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with ξj ≥ 0. We solve the problem of finding the smallest sphere introducing
the Lagrangian

L = R2 −
m∑
j

(R2 + ξj − ‖Φ(xj)− a‖2)βj −
m∑
j

ξjμj + C
m∑
j

ξj

where βj ≥ 0 and μj ≥ 0 are Lagrange multipliers, C is a constant and
C
∑m

j ξj is a penalty term. After differentiating w.r.t R, a, ξj we may elimi-
nate the variables R, a and μj , turning the Lagrangian into a functionW of the
variables βj :

W =
m∑
j

Φ(xj)2βj −
m∑
i

m∑
j

βiβjΦ(xi) · Φ(xj).

The point Φ(xj) can be classified as follows: if βj = 0 it lies inside the surface;
if βj = C it lies outside the sphere; if 0 < βj < C it lies on the surface of the
Feature Space sphere. Such a point will be referred to as a support vector (SV).
Now we compute the inner products Φ(xi) · Φ(xj) by an appropriate Mercer
kernel G(xi, xj) (kernel trick). The usual choice is to use the Gaussian kernel.
We have adopted this choice in the experimentations described in the Section
4. After using the kernel trick, the functionW , becomes

W =
m∑
j

G(xj , xj)βj −
m∑
i

m∑
j

βiβjG(xi, xj).

It can be shown that the position of the center a can be unknown. Nevertheless,
for each point x the distance R(x) between the center a and its image in Feature
Space Φ(x) can be computed:

R2(x) = ‖Φ(x)−a‖2 = G(x, x)−2
m∑
j

βjG(xj , x)+
m∑
i

m∑
j

βiβjG(xi, xj).

3. Kernel K-Means

Since SVC can detect only one cluster, the goal of our research is to for-
mulate a Kernel Method, based on the support vector description of the data
set. We propose an algorithm, Kernel K-Means for clustering. Given a data set
D, we map our data in some Feature Space F , by means a nonlinear map Φ.
Unlike SVC, we consider K, whose value is apriori fixed, centers in Feature
Space (ai ∈ F i = 1, . . . , K). We call the set A = (a1, . . . , aK) Feature
Space Codebook since in our representation the centers in the Feature Space
play the same role of the codevectors in the Input Space. In analogy with the
codevectors in the Input Space, we define for each center ac its Voronoi Set
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in Feature Space. The Voronoi Set in Feature Space (FVc) of the center ac is
the set of all vectors xi in D such that ac is the closest vector for their images
Φ(xi) in the Feature Space

FVc = {xi ∈ D | c = arg min
j
‖Φ(xi)− aj‖}

Now we describe the Kernel K-Means algorithm. Kernel K-Means uses a K-
Means-like strategy, i.e. moves repeatedly all centers ac in the Feature Space,
computing SVC on their FVc, until any center changes. In order to make
more robust Kernel K-Means than K-Means with respect to the outliers SVC
is computed on FVc(ρ) of each center ac. FVc(ρ) is defined as

FVc(ρ) = {xi ∈ FVc and ‖Φ(xi)− ac‖ < ρ}.

FVc(ρ) is the Voronoi set in the Feature Space of the center ac without outliers,
that is the images of data points whose distance from the center is larger than
ρ. The parameter ρ can be set up using model selection techniques [Bishop,
1995]. Kernel K-Means has the following steps:

1 Project the data Set D in a Feature Space F , by means a nonlinear map-
ping Φ. Initialize the centers ac c = 1, . . . , K ac ∈ F

2 Compute for each center ac FVc(ρ)

3 Apply SVC to each FVc(ρ) and assign to ac the center yielded, i.e.

ac = SV C(FVc(ρ))

4 Go to step 2 until any ac changes, otherwise return the Feature Space
codebook.

Kernel K-Means is an EM algorithm since its second and third step are re-
spectively the expectation and maximization stage of an EM algorithm. Hence
Kernel K-Means convergence is guaranteed, since each EM algorithm is con-
vergent.

4. Experimental Results

Kernel K-Means has been tried on a synthetic data set (Delta Set) and on two
UCI data sets, that is the IRIS Data [Fisher, 1936] and the Wisconsin’s breast
cancer database [Wolberg and Mangasarian, 1990]. Delta Set is a bidimen-
sional set formed by 424 points of two classes nonlinearly separated. There-
fore the two classes cannot be separated by clustering algorithms that use only
two codevectors in the Input Space, since two codevectors permit only linear
separation of the data. To confirm that, we tried K-Means, using two code-
vectors, on Delta Set. As shown in the figure 1, K-Means cannot separate the
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Figure 1. (a) K-Means on Delta Set. The solid line indicates the separation line determined by
K-Means. (b) Kernel K-Means on Delta Set. The region delimited by the black line identifies
the input data whose images in the Feature Space have distance from the center a1 less than
0.75. The region delimited by the gray line identifies the input data whose images in the Feature
Space have distance from the center a2 less than 0.84.

clusters. K-Means shares this limitation with other not-kernel-based cluster-
ing algorithms, e.g. SOM [Kohonen, 1982] and Neural Gas [Martinetz and
Schulten, 1993]. Then we tried Kernel K-Means on Delta Set using only two
centers. As shown in figure 1, Kernel K-Means can separate the two clusters,
unlike other clustering algorithms. Iris Data is formed by 150 points, that be-
long to three different classes. One class is linearly separable from the other
two, but the other two are not linearly separable from each other. Wisconsin’s
breast cancer database collects 699 cases for such diagnostic samples. We
have removed 16 database samples with missing values, therefore the database
considered in the experiments has 683 patterns. The patterns belong to two dif-
ferent classes, the former has 444 samples, the latter has 239 samples. We tried
Kernel K-Means, K-Means, Neural Gas and SOM on IRIS data and Wiscon-
sin database, using respectively two and three centers. The table 1 shows the
average performances of the algorithms on 20 runs, obtained changing algo-
rithm inizializations and parameters. As shown in the table, Kernel K-Means
performances are better than other clustering algorithms on both datasets.

5. Conclusion

In this paper we have presented a novel clustering algorithm, Kernel K-
Means. Under this aspect Kernel K-Means compares favourebly with clus-
tering algorithms such as Self Organizing Maps and Neural Gas, whose con-
vergence is not guaranteed. Kernel K-Means is a batch clustering algorithm,
therefore its performance is not affected by the pattern ordering in the training
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model IRIS Data Wisconsin Database
Points Classified Correctly Points Classified Correctly

SOM 121.5 ± 1.5 (81.0%) 660.5 ± 0.5 (96.7%)
K-Means 133.5 ± 0.5 (89.0%) 656.5 ± 0.5 (96.1%)

Neural Gas 137.5 ± 1.5 (91.7%) 656.5 ± 0.5 (96.1%)
Kernel K-Means 142 ± 1 (94.7%) 662.5 ± 0.5 (97.0)%

Table 1. Average Kernel K-Means, SOM, K-Means and Neural Gas performances on IRIS
Data and Wisconsin’s breast cancer database. The results have been obtained using twenty
different runs for each algorithm.

set, unlike on-line clustering algorithms. The main Kernel K-Means quality
consists, unlike most clustering algorithms published in the literature, in pro-
ducing nonlinear separation surfaces among data. Kernel K-Means compares
better with K-Means, Neural Gas and SOM, on a synthetic dataset and two
UCI benchmarks. These results encourage the use of Kernel K-Means for the
solution of real world problems.
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Abstract: Bayesian Neural Networks – considering priors and averaging model results 
accordingly with weights probabilities - can be an important resource in 
solving classification problems whose learning sets have few samples. Hybrid 
Monte Carlo Markov Chains (HMCMC) are typically used to numerically 
solve the integrals involved in learning procedures; in this work a Genetic 
Algorithm is proposed as alternative to gradient measure to hybridize MCMC 
so that multimodal distribution can be better fitted and derivative calculation 
needed for gradient information can be omitted. 

Keywords: Bayesian Neural Networks, Genetic Algorithms, Monte Carlo Markov Chains, 
Metropolis Algorithm.

1. BAYESIAN NEURAL NETWORKS 

Multidimensional discriminant analysis is the goal of many machine learning 
applications; in different areas neural networks represent an important approach to 
data mining and pattern recognition. 

In financial risk management, for example, Basilea committee is now 
developing methods to estimate capital requirements needed to mitigate bank’s 
operational losses; causal analysis is proposed to classify relationships between 
critical environmental factors and extreme loss events. 

Due to the exceptionality of extreme losses, statistical samples are often not 
representative of possible scenarios, so that it’s important to include in loss models 
special assumptions that make up for the lack of past experience. 

These assumption are: 
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prior information available about model; 
production of predictive results as weighted composition of various results, each 

depending from the likelihood of the particular model that originated it. 
Bayesian learning provides an interesting framework to conjugate priori

information with observed likelihood in which posterior probability of the model 
given observed data is derived from the probability of the model and from the 
probability of data given the model; formally: 

p(x|y)  p(y|x)p(x)

Bayesian Neural Networks are based on bayesian learning: priors are given by  
the probability distributions of networks weights, likelihoods are the net errors 
computed feeding with input data the nets updated with the different sets of prior 
weights:

“In the bayesian approach to statistical prediction one does not use a single 
“best” set of network weights, but rather integrates the predictions from all possible 
weight vectors over the posterior weight distribution which combines information 
from the data with a prior bias toward more plausible weights ... with integration, a 
weight vector that fits data only slightly better than others contributes only slightly 
more to the prediction than completely dominating, as happens with maximum 
likelihood estimation.” [Neal, 1992] 

2.  MONTE CARLO MARKOV CHAINS 

Integrations involved in bayesian neural networks are very complex and difficult 
to compute analitically; a class of numerical solutions is then proposed for posterior 
probability approximation, the class of “Montecarlo Methods”. 

The fundamental idea of  Montecarlo Methods is related to the fact that an 
integral can be expressed as an expectation of a function f(x) over the probability 
p(x) [Walsh, 2002]. 

Thus, if we draw a large number x1,...,xn of random variables from the density 
p(x) then: 
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Hence, for bayesian integration we have: 

In many complex problems proposal distribution p(x) is far from draw values 
covering target distribution; MCMC is a strategy for generating samples using a 
Markov chain. 

For any starting point, the chain will convergence to the desidered invariant 
distribution f(x), as long as T is a stochastic transition matrix that obeys the 
following properties: 

Irreducibility.
For any state of the Markov chain, there is a positive probability of visiting all 

other states; that is, all states communicate with each other, as one can always go 
from any state to any other state (although it may take more than one step).

Aperiodicity.
A chain is said to be aperiodic when the number of steps required to move 

between two states (say x and y) is not required to be multiple of some integer. Put 
another way, the chain is not forced into some cycle of fixed length between certain 
states.

Metropolis Algorithm is a routine that generates Markov Chains meeting 
irreducibility and aperiodicity requirements: 

1. Start with any initial value μ0 satisfying f (μ0) > 0.
2. Using current μ value, sample a candidate point μ* from some 

jumping distribution q(μ1; μ2), which is the probability of returning 
a value of μ2 given a previous value of μ . This distribution is also 
referred to as the proposal or candidate-generating distribution.
The only restriction on the jump density in the Metropolis algorithm 
is that it is symmetric, i.e., q(μ1; μ2) = q(μ2; μ1). 

3. Given the candidate point μ , calculate the ratio of the density at the 
candidate (μ*) and current (μt- ) points, 

= p(μ*) / p(μt-1) = f μ*  / f (μt-1)   

Notice that because we are considering the ratio of p(  under 
cancels out. two different values, the normalizing constant K
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Metropolis algorithm, although widely used,  perform poorly because it explore 
the space by a slow random walk; to improve its performances, it can include 
additional information to reduce random walk behaviour in state transition. 

The Hybrid MCMC [MacKay] uses gradient information to find candidate 
directions in which changes have higher probability of being accepted. 

Despite its efficency, HMCMC algorithm has relevant teoretical and pratical 
limitations:

first, it’s affected from local minima convergence and lacks in exploring 
multimodal distributions; second it only works if gradient information is available, 
i.e. if  the distribution to fit is known and derivable. From the implementative point 
of view, developement of complex applications with gradient calculation could be 
very expensive and an alternative way to gain information about function’s variation 
could be preferred. 

Genetic Algorithms are optimization routines that reach the maximum of a 
function random generating and selecting candidate values (like Montecarlo 
Methods) and extracting the “building blocks” of  optimal candidates from previous 
selected candidates; GA can hence substitute gradient descent in rectifying 
candidates for Metropolis algorithms. 

3. GMCMC ALGORITHM 

In our experiment we follow the suggestion to start the chain as close to the 
center of the distribution as possible, for example taking a value close to the 
distribution’s mode. [Storn et al., 1995].

The test distribution is a classical bimodal one [Andrieu et al., 2003] 
defined from the equation: 

P • 0.3 exp(-0.2x2)+0.7 exp(0.2(x-10) 2)

4. If the jump increases the density (  >1), accept the candidate point 
(set μt = μ*) and return to step 2. If the jump decreases the density 
(  < 1), then with probability accept the candidate point, else 
reject it and return to step 2. 
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Figure 1. The test distribution 

To intercept multiple modes we determine various function maxima with a GA 
an then we use those maxima as Metropolis starting values where chains are 
parallelized; multimodal optimization requires multi-niche optimization in GA 
obtained via opportune replacement technique. 

Step 1 – Initial population generation 
Accordingly with basic GA procedure [Goldberg, 1989] initial GA population 

consist of  a fixed number of randomly generated binary strings. 
Step 2 – Selection 

Random selected pairs of strings are decoded in the corresponding decimal 
values which are passed through the fitness function (the function to optimize); for 
each pair the string with higher fitness is admitted to the next step. Selection is 
repeated as many times as the size of the population. 

Step 3 – Crossover 
Bits from random selected pairs of strings are recombined, a string exchanges its 

bits in randomly selected positions with bits in corresponding positions of another 
string.

Figure 2. Crossover 
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Crossover operator causes implicit parallelism: new solutions are composed with 
elements from old selected solutions so, when a good solution is selected are 
intrinsecally good valued all possible solutions having some component in common 
with it.

Step 4 –  Replacement 
With replacement new strings coming from crossover step substitute previous 

population.
To obtain multimodal optimization we have to preserve local maxima from 

evolutive pressure that tends to converge to the best individual discarding each 
other.

Total dominance of the best is avoided replacing only a portion of past 
generation and choosing, for each replacement, the old individual most similar to the 
new generation’s individual that overwrites it. 

Similarity between strings is given by their euclidean distance. 
[Cedeno et al., 2001]
Step 5 – Reiterate n times from Step 2
Step 6 – Apply Metropolis algorithm 

For each resulting individual Metropolis routine restarts from the decimal value 
decoded from corresponding string; it cosequently produces as many chains as the 
population’s size. 

4. RESULTS

“The quality of an MC algorithm is given by the number of run until the chain 
approaches stationarity; slower the algorithm longer the flat periods corresponding 
to all candidates being rejected.” [Walsh, 2002] 

The aim of our experiment is to generate a MCMC that fits a multimodal 
distribution rapidly achieving stationarity.

Algorithm parameters are setted to obtain fast convergence on various sub-
optimal Hasting starting values: 

NIters = 10 
Is the number of iterations for GA 
NGenes = 10 
Is the length of  binary strings
NIndividuals = 20 
Is theGA population size 
Max_Coded = 100 
Is the range of possible functions arguments 
Mutation_P = 0.05 
Is the mutation rate 
Replacement_P = 0.3 
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Is the new individual’s replacement rate 
XOver_P = 0.5 
Is the crossover rate 

NSteps = 30 
Is the number of MC steps 
MC_step = 1 
Is the maximum chain’s transition step 

As you can see in the next graph the Markov processes create a diffusion around 
the most likely values found by GA: 
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Figure 3. GA  polarizes MCMC starting values 

Convergence test is needed to assess whether stationarity has indeed been 
reached; Geweke test compares values early in the sequence with those late in the 
sequence [Watanabe et al., 2004]. 

Given X(i) the i th draw of a parameter in the recorded m draws, Geweke 
proposes the following statistic called convergence diagnostics (CD). 

where 2
A / nA and 2

B / nB are standard errors of A and B . If the sequence of X(i)
is stationary, it converges in distribution to the standard normal. 
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In the run we are discussing, convergence diagnostic gives these 
result:

Table 1. Convergence statistic 

Z-Value 0,132512
P - Value 0,55271

It confirms the stationarity of the chain composed by the sub-chains derived 
from previously optimized starting values. 

5. CONCLUSIONS

This work highlights the power of GA in finding multiple sub–optimal values to 
use as Metropolis algorithm starting values; recognized distribution’s modes, 
MCMC burn-in time is drammatically reduced while gradient–descent optimization 
tecniques are avoided because domain-dependent and not suitable for multimodal 
distributions.

Good persectives are hence expected for progress in bayesian neural network 
learning although genetic optimization in neural networks weights causes 
redundances dued to network’s simmetry: different weight’s strings originate 
equivalent nets [Whitley, 1995]. 

Alternative net’s representations can be investigated to improve bayesian neural 
networks efficency. 
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Abstract The theoretical framework of Statistical Learning Theory (SLT) for pattern recog-
nition problems is extended to comprehend the situations where an infinite value
of the loss function is employed to prevent misclassifications in specific regions
with high reliability.

Sufficient conditions for ensuring the consistency of the Empirical Risk Min-
imization (ERM) criterion are then established and an explicit bound, in terms
of the VC dimension of the class of decision functions employed to solve the
problem, is derived.

Keywords: Loss function, Empirical Risk Minimazation, Consistency.

1. Introduction

Pattern recognition problems deal with the important task of performing a
binary classification of data pertaining to a given physical system by examining
a finite collection of examples, usually called training set.

A variety of different methods have been proposed for solving pattern recog-
nition problems; normally, the theoretical framework employed to establish the
consistence of the followed approach is the one proposed by Vapnik & Cher-
vonenkis more than thirty years ago [Vapnik and Chervonenkis, 1971; Vapnik,
1982; Vapnik, 1998] and currently referred to as Statistical Learning Theory
(SLT).

In this framework the solution of any pattern recognition problem is shown
to be equivalent to a proper functional optimization problem, where the (proba-
bility) measures involved are totally unknown and must be (implicitly)
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estimated through the examples contained in the training set. In particular,
the functional to be minimized, called expected risk, is the expected value of a
binary loss function that assumes value 1 in correspondence with a given input
data, if a misclassification occurs.

The adoption of a binary loss function amounts to treat in the same manner
all the examples in the training set; consequently, no a priori information is
supposed to be available about the reliability of the data at hand. In fact, if
this information would be accessible, a possible way of taking into account the
highest confidence associated with a specific subset of the input space could
be to increase the value of the loss function in that region.

In the limit case we could assign an infinite value of the loss function in
correspondence with the data belonging to the region with high reliability, thus
preventing any misclassification inside it. However, the adoption of this choice
violates a basic requirement for the application of SLT, since the consistency of
the Empirical Risk Minimization (ERM) criterion (usually adopted in pattern
recognition techniques) is established only if the expected risk is always finite.

In this paper an extension of the theoretical framework of SLT is proposed to
comprehend the case of pattern recognition problems where the loss function
can assume an infinite value. In particular, it is shown that the finiteness of the
VC dimension for the class of decision functions employed is still a sufficient
condition for the consistency of the ERM criterion. An explicit upper bound
for the error probability is provided, depending on the size of the available
training set.

Due to space limitations, some proofs have been omitted.

2. The theoretical framework for pattern recognition
problems

Consider a general pattern recognition problem, where vectors x ∈ D ⊂ R
d

have to be assigned to one of two possible classes, associated with the values
of a binary output y, coded by the integers −1 and +1. Every solution for the
pattern recognition problem at hand is given by a binary function ϕ : D →
{−1, 1}, called classifier or decision function.

Usually, a sufficiently large set of classifiers Γ = {ϕ(x, α), α ∈ Λ} is
considered and the best decision function ϕ(x, α∗) that minimizes the expected
risk

R(α) =
∫

Q(z, α)dF (z) , α ∈ Λ

is selected. Here, F (z) is the joint cumulative distribution function (c.d.f.) of
z = (x, y), whereas Q is called loss function and is given by
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Q(z, α) = |y − ϕ(x, α)| =
{

0 if y = ϕ(x, α)
1 if y 	= ϕ(x, α) (1)

However, when solving real world pattern recognition problems, usually we
do not know the distribution function F (z), but have only access to a training
set Sl containing l samples (xj , yj), j = 1, . . . , l, supposed to be obtained
through l i.i.d. applications of F .

In this case we have not sufficient information to retrieve the minimum of
the expected risk. A possible way to proceed is to apply the Empirical Risk
Minimization (ERM) method, which suggests to calculate the function in Γ
that minimizes the empirical risk, i.e. the risk computed on the training set.

Remp(α) =
1
l

l∑
j=1

Q(zj , α) (2)

It is then important to obtain necessary and sufficient conditions for the
consistence of the ERM approach. Vapnik [Vapnik, 1998, page 82] has shown
that a stronger definition of consistency allows to rule out trivial situations:

Definition 1 The ERM method is strictly consistent for the set of functions
{Q(z, α), α ∈ Λ} and the probability distribution function F (z) if for any non-
empty subset Λ(c) = {α ∈ Λ : R(α) ≥ c} with c ∈ (−∞, +∞) the following
convergence holds

inf
α∈Λ(c)

Remp(α) P−−−→
l→∞

inf
α∈Λ(c)

R(α)

Necessary and sufficient conditions for strict consistency are provided by
the following theorem [Vapnik, 1998, page 88].

Theorem 2 If two real constants a and A can be found such that for every
α ∈ Λ the inequalities a ≤ R(α) ≤ A hold, then the following two statements
are equivalent:

1 The empirical risk minimization method is strictly consistent on the set
of functions {Q(z, α), α ∈ Λ}.

2 The uniform one-sided convergence of the mean to their matematical
expectation takes place over the set of functions {Q(z, α), α ∈ Λ}, i.e.

lim
l→∞

P
{

sup
α∈Λ

(R(α)−Remp(α)) > ε

}
= 0, for all ε > 0
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Vapnik also gives an upper bound for the rate of convergence [Vapnik, 1998,
page 130]:

P
{

sup
α∈Λ

(R(α)−Remp(α)) > ε

}
≤ 4 exp

{(
GΛ(2l)

l
−
(

ε− 1
l

)2
)

l

}
(3)

where GΛ(m) is the so called Growth function.
The quantity exp(GΛ(m)) represents the highest number of different clas-

sifications achievable by the functions in Γ on a sample of m points; note
that GΛ(m) depends only on Λ and m. Furthermore it can be shown that the
growth function assumes only two possible behaviors: linear for all values of
m or linear for all m ≤ h, where h is a positive integer called VC dimension,
and logarithmic for m > h. This result allows to characterize completely the
consistence of the ERM approach; in fact for any c.d.f. F (z), a sufficient con-
dition for the consistency of the ERM method is that the set Γ has a finite VC
dimension.

3. A natural extension to unbounded loss functions

The theoretical framework described in the last section treats all the exam-
ples (xj , yj) of the training set in the same way; no information is supposed
to be known about the confidence of the output value yj assigned to the input
vector xj . On the other hand, if this kind of information is actually available,
we can properly modify the loss function Q to take into account the different
reliability associated with each portion of the input space.

In the limit case, if we have high confidence in output values included in
samples belonging to a given subset C ⊂ Z, we can assume that the loss
function Q takes an infinite value in these points. Denote with

C+ = {x ∈ D : (x,+1) ∈ C} , C− = {x ∈ D : (x,−1) ∈ C}

the subsets of C with positive and negative label respectively, and with

D+
α = {x ∈ D : ϕ(x, α) = +1} , D−

α = {x ∈ D : ϕ(x, α) = −1}

the partition of X in two regions made by the function ϕ(x, α) ∈ Γ.
With this definition only the classifiers ϕ(x, α) such that both the intersec-

tions D−
α ∩C+ and D+

α ∩C− are empty can lead to a finite value of the expected
risk. This condition can be viewed as a too strong constraint on the solution
we are searching for. In fact, even if the measure of the subset

Tα = (D−
α ∩ C+) ∪ (D+

α ∩ C−)
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is negligible, the expected risk goes to infinity.
To relax this constraint we can accept as possible solutions also the decision

functions ϕ(x, α) for which the measure of Tα is smaller than a prescribed
tolerance τ > 0. The corresponding value of the expected risk R(α) can be
kept finite if the following loss function is employed:

Qτ (z, α) =
{

Q′(z, α) if μ(Tα) ≥ τ
Q(z, α) if μ(Tα) < τ

(4)

where

Q′(z, α) =

⎧⎨⎩
0 if y = ϕ(x, α)
1 if y 	= ϕ(x, α) and (x, y) /∈ C
∞ if y 	= ϕ(x, α) and (x, y) ∈ C (i.e. if x ∈ Tα)

(5)

Using these definitions, the expected and the empirical risk become respec-
tively

Rτ (α) =
∫

Qτ (z, α)dF (z), Rτ,emp(α) =
1
l

l∑
j=1

Qτ (zj , α)

Now, we want to extend results on consistency of the ERM method to this
new setting. To this aim a generalization of Vapnik’s theory is required to
include situations where the loss function assume values in the range [0,∞].

Denote with Λτ = {α ∈ Λ : μ(Tα) < τ} the subset of Λ including only
parameters α which provide a finite loss function and with Λ∞ the complement
of Λτ in Λ. Note that if α ∈ Λτ , the expected risk Rτ (α) assumes a finite value,
while Rτ (α) = ∞ for all α ∈ Λ∞.

It can be easily seen that the definition of strict consistency for ERM method
can be directly generalized to the present case. Note that, according to the
hypothesis of Theorem 2, we suppose that two real constants a and A ∈ R

exist such that for every c ≤ a, Λ(c) = Λ(a) and for every c ≥ A, Λ(c) = Λ∞.
Then, we can consider only the real values c ∈ [a, A] and the case c = ∞.

The following three lemmas provide specific results that are needed to gen-
eralize Theorem 2. Denote with Λτ (c) = {α ∈ Λτ : Rτ (α) > c} the subset of
Λ(c) containing the parameters which provide a finite expected risk. Note that,
for all c ∈ [a, A],

Λ(c) \ Λτ (c) = Λ(∞) = Λ∞ (6)

Lemma 3 If

inf
α∈Λ∞

Rτ,emp(α) P−−−→
l→∞

inf
α∈Λ∞

Rτ (α) (7)
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then

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ,emp(α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 (8)

for every ε > 0 and every c ∈ [a, A].

Proof. If (8) would not be valid, then, by using (6) we obtain for every ε > 0

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ,emp(α)− inf

α∈Λ∞
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 (9)

and it can be easily shown that (7) leads to

inf
α∈Λ(c)

Rτ,emp(α) P−−−→
l→∞

inf
α∈Λ∞

Rτ (α) =∞

This is not possible since Rτ,emp(α) ∈ R for all α ∈ Λ(c) with c ∈ [a, A].
�

Lemma 4 Under hypothesis (7) the following two statements are equivalent
for all c ∈ [a, A]:

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ (α)− inf

α∈Λ(c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0 (10)

lim
l→∞

P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0

(11)

Proof At first we can note that for all c ∈ [a, A]

inf
α∈Λ(c)

Rτ (α) = inf
α∈Λτ (c)

Rτ (α) (12)

since
inf

α∈Λ∞
Rτ (α) = ∞

Now, let us prove that (10) implies (11); we have

lim
l→∞

P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}
≤ lim

l→∞
P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λ(c)
Rτ,emp(α)

∣∣∣∣ > ε

2

}
+ lim

l→∞
P
{∣∣∣∣ inf

α∈Λ(c)
Rτ,emp(α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

2

}
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Due to (12) and (10) the first term at the right hand side vanishes; for the last
term it is sufficient to apply Lemma 3.

To verify that (11) implies (10) we employ Lemma 3 to obtain that

inf
α∈Λ(c)

Rτ,emp(α) P−−−→
l→∞

inf
α∈Λτ (c)

Rτ (α)

from which (10) follows after the application of (12). �

Lemma 5 The following equality holds for every ε > 0:

P

{∣∣∣∣ inf
α∈Λ∞

Rτ (α) − inf
α∈Λ∞

Rτ,emp(α)

∣∣∣∣ > ε

}
= P

{
sup

α∈Λ∞
(Rτ (α) − Rτ,emp(α)) > ε

}

Using previous lemmas we can prove the following two results which gen-
eralize Theorem 2 and the upper bound for the rate of convergence (3).

Theorem 6 The following two statements are equivalent:

1 The ERM method is strictly consistent on the set of functions {Qτ (z, α),
α ∈ Λ}.

2 For every ε > 0

lim
l→∞

P
{

sup
α∈Λ

(Rτ (α)−Rτ,emp(α)) > ε

}
= 0 (13)

Proof Since

lim
l→∞

P
{

sup
α∈Λ

(Rτ (α)−Rτ,emp(α)) > ε

}
≤ lim

l→∞
P
{

sup
α∈Λ∞

(Rτ (α)−Rτ,emp(α)) > ε

}
+ lim

l→∞
P
{

sup
α∈Λτ

(Rτ (α)−Rτ,emp(α)) > ε

}
(14)

to obtain that 1 implies 2 it is sufficient to prove that the two terms at the right
hand side of (13) vanish for every ε > 0.

For the first term we can apply Lemma 5 by noting that, when c = ∞, the
definition of strict consistency gives

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ∞
Rτ (α)− inf

α∈Λ∞
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0 (15)
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For the second term we can use Lemma 4, thus obtaining for c ∈ [a, A] that

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ (α)− inf

α∈Λ(c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0

is equivalent to

lim
l→∞

P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0

Now, when α ∈ Λτ (c), we have Qτ (z, α) = Q(z, α); then, Theorem 2 can
be employed to ensure that

lim
l→∞

P
{

sup
α∈Λτ

(Rτ (α)−Rτ,emp(α)) > ε

}
= 0 for every ε > 0

To verify that 2 implies 1, we note that (13) implies

lim
l→∞

P
{

sup
α∈Λ∞

(Rτ (α)−Rτ,emp(α)) > ε

}
= 0

and

lim
l→∞

P
{

sup
α∈Λτ

(Rτ (α)−Rτ,emp(α)) > ε

}
= 0

Then Lemma 5 ensure that

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ∞
Rτ (α)− inf

α∈Λ∞
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0 (16)

whereas the application of Theorem 2 yields

lim
l→∞

P
{∣∣∣∣ inf

α∈Λτ (c)
Rτ (α)− inf

α∈Λτ (c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 for every ε > 0

By using Lemma 4 we obtain therefore

lim
l→∞

P
{∣∣∣∣ inf

α∈Λ(c)
Rτ (α)− inf

α∈Λ(c)
Rτ,emp(α)

∣∣∣∣ > ε

}
= 0 (17)

for every ε > 0 and every c ∈ [a, A]. �
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Theorem 7 The following inequality holds

P

⎧⎨⎩sup
α∈Λ

⎛⎝∫ Qτ (z, α)dF (z)− 1
l

l∑
j=1

Qτ (zj , α)

⎞⎠ > ε

⎫⎬⎭
≤ 4 exp

{(
GΛτ (2l)

l
−
(

ε− 1
l

)2
)

l

}

+ 4 exp

{(
GΛ∞(2l)

l
−
(

τ − 2
l

)2
)

l

}
(18)

4. A more practical choice for the empirical risk

Unfortunately, in real-world applications the measure μ on the input space
D is unknown and only the training set is available. In these cases the empirical
risk Rτ,emp(α), which depends on μ(Tα), cannot be calculated. Thus we have
to use a different form of the empirical risk that allows a direct evaluation while
ensuring the convergence in probability to infα∈Λ Rτ (α) when l increases in-
definitely. In this way the replacement does not prejudice the consistency of
the ERM method.

A possible choice is the following

R′
emp(α) =

1
l

l∑
j=1

Q′(zj , α)

where Q′(z, α) is defined in (5).
We can prove that, under mild conditions, this form of the empirical risk

shares the same convergence properties of Rτ,emp(α).
If Λ0 = {α ∈ Λτ : μ(Tα) = 0}, the corresponding classifiers ϕ(x, α),

with α ∈ Λ0 do not misclassify any point of the certainty region C. Then
Λ0,τ = Λτ \ Λ0 includes the values of α for which 0 < μ(Tα) < τ .

The following corollary establishes the convergence properties of R′
emp(α).

Corollary 8 If

inf
α∈Λ0

Rτ (α) ≤ inf
α∈Λ0,τ

Rτ (α) (19)

then
inf
α∈Λ

R′
emp(α) P−−−→

l→∞
inf
α∈Λ

Rτ (α) (20)

Furthermore, it can be easily proved that the rate of convergence of R′
emp(α)

to Rτ (α) can be upper bounded by the right hand side of (17).
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Abstract In this paper, we investigate the full equivalence, under basic conditions, be-
tween the Probabilistic PCA clustering approach and the reconstruction of sig-
nal subspaces based on the singular value decomposition. Therefore this equiv-
alence allows the adaptive determination of the clusters identified on data, in
order to maximize the quality of the reconstructed signal. Furthermore, using
known results in SVD framework, we also introduce a new technique to esti-
mate automatically the dimension of the latent variable subspace.

Keywords: probabilistic PCA clustering, SVD signal estimate, SHEM algorithm

1. Introduction

A deep analysis of the two methods reveals a common interpretation which
confirms the investigated purposes. In this paper we can suggest a different
“point of view” by which examining the same problem: the determination of
meaningful components in noisy data. The general idea, which looks on to
a potential similarity of the results of the two methods, is the necessity of
selecting a reduced space from the original one, provided from an incoming
measurement matrix. The matter which leads to this kind of procedure is that
the entire space includes some constructive information and others unknown,
noisy elements with no advantages in the right acknowledgment of the signal.
In the Probabilistic PCA (PPCA) approach, the concept of the principal space
concerns the selection of a subspace, chosen in a suitable way, which represents
a compromise between the attempt to have less complexity and the need to not
eliminate the useful information. In the same way, the SVD decomposition is
intended to the estimation of a signal space and a noisy space with the aim of
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recovering the useful information from the full set of observed data. We shall
analyze in the following the common features.

1.1 The PPCA technique

The Probabilistic PCA method [Christopher M. Bishop, 1997] provides a
technique for clustering and reconstruction of data space. The computation of
the latent space makes use of the “factor loadings” matrix W which allows the
projection of the reduced space (described by the variable xn) onto the whole
space (estimate variable t̂n) and the inverse projection using the following:

t̂n = W (W T W )−1xn + μ and xn = W T (tn − μ) (1)

where μ describes the mean value of the data matrix from pattern tn. In the
PPCA model, developed for a generic number of clusters, it is usual to deter-
mine the W matrix through the maximization of log-likelihood function and
the result directly connected with sample covariance matrix S [Christopher
M. Bishop, 1997]. Every single block of the W expression can be computed
under the hypothesis of isotropic noise by calculating the singular value de-
composition of the sample covariance S. The condition leads to the expression
of the covariance matrix C of the probabilistic model:

C = σ2I + WW T (2)

where σ2 represents the variance of the noisy process. It can be obtained (once
established the dimension q of the latent space) as the mean value of the re-
maining d-q eigenvalue terms λj on the diagonal of the covariance matrix (de-

composed by SVD) σ2 = 1
d−q

d∑
j=q+1

λj . Therefore the expression of W , under

the previous assumption about noise [Christopher M. Bishop, 1997] is:

W = Uq

(
Λq − σ2Iq

)1/2
R (3)

where q describes the dimension of the latent space, Uq represents the first q
columns of the left eigenvectors matrix of S, Λq the correspondent eigenvalues
matrix and R is an arbitrary rotational matrix.

The purpose is to find out a formulation of C, pointing out every single term
of the last formula (3) in connection with the general data matrix D. Describing
D with its singular value decomposition D = UDΛDV T

D , the first step is to
calculate the correspondent sample covariance matrix S :

S = Cov(D) =
DT D

N
=

VD√
N

Λ2
D

V T
D√
N

(4)
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Evaluating the covariance matrix S in the form of SVD it is necessary to de-
terminate the correct subspace blocks and later the factor loadings W :

S = USSSV T
S = (US1 US2)

(
SS1 0 SS1

0

)(
V T

S1

V T
S2

)
(5)

where the index 1 and 2 are referred to the latent space and the rejected space.
Comparing the two expressions (4 and 5) we can obtain:

US =
VD√
N

=
1√
N

[Vq Vd−q] (6)

SS = Λ2
D =

[
Λ2

q Λ2
d−q

]
(7)

V T
S =

V T
D√
N

=
1√
N

[Vq Vd−q]
T (8)

From the expression of factor loadings in the PPCA approach (3), the corre-
spondent blocks allow to express the formula in term of SVD of S (5):

W = [US1]
[
SS1 − σ2Iq

]1/2 [
V T

S1

]
(9)

with Uq = US1 (left eigenvectors of the q dimensional subspace), Λq = SS1

(eigenvalues correspondent to the q dimensional subspace), R = V T
S1 (depends

on the arbitrariness of the rotational matrix R which has to respect the only
condition of orthogonality)

If we develop the covariance C (2) illustrated in the sense of W value (9):

C = σ2I + [US1]
[
SS1 − σ2Iq

]1/2 [
V T

S1

]
[VS1]

[
SS1 − σ2Iq

]1/2 [
UT

S1

]
(10)

and keeping in mind that: the eigenvalues matrix
[
SS1 − σ2Iq

]
is diagonal then

equal to its transposed; is verified the formula
[
V T

S1

]
[VS1] = I; we obtain:

C = σ2I + [US1]
[
SS1 − σ2Iq

] [
UT

S1

]
(11)

Finally considering the previous (6), (7) and (8) the expression of C will be the
following:

C = σ2I +
Vq√
N

(Λ2
q − σ2Iq)

V T
q√
N

(12)

which represent the covariance in the PPCA model in function of the matrix
D.
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1.2 SVD technique for signal space estimate

The SVD method for noisy matrix analysis take advantage of the singular
value decomposition of the complete observation data matrix M expressed
as the sum of a signal matrix E and a noise matrix N , under the conditions
rank(M) = rank(N) = d and rank(E) = q < d as shown:

M = E + N = (Um1 Um2)
(

Sm1 0 Sm2

0

)(
V T

m1

V T
m2

)
(13)

where Sm1 and Sm2 are the singular values of M , both organized in diagonal
matrix. The formula describes a generic SVD form of M and we know it is al-
ways possible to decompose the matrix M by SVD to have the eigenvalues in a
decreasing order. The separation of the blocks in the matrix describes two dif-
ferent sections, standing for signal and noise part [DeMoor, 1993]. To identify
the correct splitting point it is possible to measure the maximum differende
(a gap) between eigenvalues along the principal diagonal on the eigenvalues
matrix of M . So we can write down the correspondent expressions, obtained
developing the sum of E and N in SVD decomposition: Sm1 =

√
S2

e1 + σ2Iq

(with Se1 eigenvalues matrix of E) and Sm2 = σId−q (noise eigenvalues ma-
trix). Among the Sm1 values and the remaining Sm2 there is a threshold (gap)
caused by the fact that the d − q values σ2 in Sm2 are all equal because gen-
erated from the same Gaussian noisy process. This threshold is not defined
at first and it clearly depends on the specific properties of the data matrix and
the additional noise. The matter is that the "gap" feature turns out to be easily
identifiable in the determination of the subspace.

The aim is to calculate the unknown signal matrix E from the SVD of
the generic data matrix M (which is known). The problem is that we have
not enough parameters to determine every single eigenvalues and eigenvectors
block from M . The needs is to estimate E using an alternative way, such as
the minimum variance estimate:

min
X∈RqXq

‖MX − E‖2F (14)

with the consequence that E matrix can be expressed as [DeMoor, 1993]:

Ê = [Um1]
[
S2

e1

(
S2

e1 + σ2Ir

)−1/2
] [

V T
m1

]
(15)

As we done previously, we want to underline the final expression of the co-
variance of E and therefore we have to start from the data matrix M . From the
expression of minimum variance of E and considering the Sm1 =

√
S2

e1 + σ2Iq

derived from a general analysis of the SVD decomposition of M , it is possible
to explicitate the E covariance matrix as below:
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Cov(E) =
ET E

N
=

=
[Vm1]

N

[
S2

e1

(
S2

e1 + σ2Iq

)−1/2
]T [

UT
m1

]
[Um1]

[
S2

e1

(
S2

e1 + σ2Iq

)−1/2
] [

V T
m1

]
=

1
N

[Vm1]
[
(Sm1)

−T (S2
m1 − σ2Iq

)T ] [(
S2

m1 − σ2Iq

)
(Sm1)

−1
] [

V T
m1

]

= [Vm1]

[
S−1

m1

]
[Se1]√

N

[
S2

m1 − σ2Iq

] [S−1
m1

]
[Se1]√

N

[
V T

m1

]
(16)

2. Analytic approach to the equivalence

About the data features on which we develop the analysis, the PPCA tech-
nique doesn’t require any particular attribute; it is not necessary to have zero
mean value because the procedure returns a normalized value by considering
the μ quantity. On the contrary the analysis of the data matrix with signal space
and noise space method, works with mean value equal to zero.The hypothesis
introduced in this paper considers a zero mean value data matrix in case of
PPCA analysis. This fact doesn’t reduce the validity of the procedure and it
doesn’t limit its generality.

In both situations we can assume the same noise conditions. The most com-
mon one is the isotropy of the noisy process, for example a Gaussian process.
In the PPCA method this hypothesis results necessary to assert that the covari-
ance matrix C can be directly connected with the sample covariance S. Conse-
quently it is possible to compute the factor loadings W through SVD analysis.
In the space decomposition method the same hypothesis can be considered as
essential, in fact it is the consequence of the condition for the existence of SVD
decomposition of M , that is NT N ∝ I (proportional to the identity matrix).
Moreover the noisy process is to be considered uncorrelated with the signal so
we can assert that Cov(M) = Cov(E) + Cov(N).

The MoG model [M. Panella, 2003] based on the probabilistic PCA, used
as fundamental structure, provides a local weighed Gaussian process. The
prior probability π(j) (j index stands for cluster) measures the influence of
the data set on the generic cluster and it is expressed by the responsibility
function Rni. The hypothesis asserted in this paper concerns to work on a
specific cluster, weighed by a unitary responsibility function, which means
that we shall consider a single cluster data set matrix. The results obtained in
this way will be extended later on the generic data matrix.

From the expressions developed in the approaches (12) and (16) we can
examine the correspondence:
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√
N

−1
[Vq] ⇐⇒

√
N

−1
[Vm1]

[
S−1

m1

]
[Se1] where Vq and Vm1 are right

eigenvectors in the data matrix D, both referred to the same signal sub-
space. The term

[
S−1

m1

]
[Se1] depends on the fact that SVD decompo-

sition generated unitary eigenvectors with the normalization term dis-
placed on the eigenvalues. On the contrary the PPCA provides a nor-
malized latent space. So, it acts as a suited scaling factor.

[
S2

m1 − σ2Iq

]
⇐⇒

[
Λ2

q − σ2Iq

]
both Sm1 and Λq describes eigen-

values with dimension corresponding to the reduced space, each one
achieved with the correspondent method.

The results of the formal check in the minimum variance estimate support
the concept perceived by intuition: both sequences lead to the same conclusion.
Finally we can conclude asserting that: the mean value and the variance of the
noise process are the same in both methods; the mean value of the signal can
be calculate for each data matrix and we proved that the covariance terms are
equal in both approaches; then if E has Gaussian distribution the Ê minimum
variance estimate corresponds to the t̂n reconstructed with PPCA technique.

3. Automatic determination of the latent subspace
dimension

The main matter about the identification of the subspaces is the selection
of the correct rank of E: the q dimension. This value is usually established
before starting the analysis of data, therefore we have no adaptive choice. Oth-
erwise q can be evaluate through some energetic considerations: for instance
the 95% of the residual variance (the method considered as reference to eval-
uate the suggested technique in the following tests) or, equivalently, it must
be fixed in advance for some constraint. We propose to choose this value us-
ing the properties of the SVD estimate, evaluating the existing gap among the
eigenvalues in the diagonal of the covariance matrix: gap⇔ max(σ2

n−σ2
n−1).

The maximum difference in fact represents the separation between the signal
space and the noise space because we speculate there should be a remarkable
difference in the variance terms. An approach like this allows to evaluate each
reconstructed cluster individually and in a adaptive way, to allow a better di-
mensional identification.

The PPCA clustering and reconstruction process, applied to a generic data
set, provides a global rearranging policy. It distributes the new sets weighting
up both aspects of local distance among the pattern and global function recon-
struction [Christopher M. Bishop, 1997]. Combining the PPCA technique of
clustering-rebuilding of the data space with this method enables a better perfor-
mance as shown afterwards. Moreover a later improvement has been developed
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for the gap method, the relative gap approach which results more profitable in

order to pick the right q: relative gap⇔ max
(

σ2
n−σ2

n−1

σ2
n−1

)
. This last approach

will be our submitted method in the following comparing tests where we shall
demostrate how efficient it is in determining the right dimension values.

4. Tests

A major improvement introduced by the present analysis concerns the de-
termination of the subspace dimension. The following tests concern different
aspects, related to the correct identification of the dimension space and to the
real problem applications as well. To manage the new technique of q dimension
recognition we used the SHEM algorithm (Splitting Hierarchical Expectation
Maximization) [M. Panella, 2001] based on the MoG (Mixture of Gaussian)
[M. Panella, 2003] structure.

4.1 Dimension recognition

In order to evaluate the performance of the proposed gap method, we gen-
erated a specific data set with the signal dimension lower than the full space
dimension and with noise dimension equal to the maximum. All clusters were
developed by a Gaussian distribution, in a more or less overlapped position,
and the noise superimposed has a variance value smaller than the signal vari-
ance (about 15-20%), zero mean value and it is spreaded on each cluster. The
table shows the signal dimension for every cluster separated by “/” item (ex-
cept for the last case where the cluster number is shown in brackets) and the
noise dimension equal to the total dimension. The results columns show the
identified dimensions in the reference and suggested methods.

It should be noted that in case of different structures, the signal dimension
results correctly identified by the gap method. On the contrary the standard
technique of the 95% residual variance cannot recognize the real dimension, in
particular when the signal dimension is considerably lower than the complete
space dimension. In the 10 clusters case, (on the vertex of an hypercube), it is
asserted the better performance of the gap method (all clusters recognized).

total
clusters

signal
dimension
per cluster

noise
dimension

cluster

total
dimension

per cluster
dimension
95% method

dimension
gap method

3 5/5/5 20 20 6/7/7 5/5/5
3 6/8/10 20 20 5/7/9 6/8/10

10 15(10) 20 20 13(9)/14(1) 15(10)

identified identified
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4.2 Function approximation

The proposed approach was evaluated also in more complex problems. The
first one concerned the real function approximation where we managed tests
on three well-known benchmarks [I. Rojas and Prieto, 2000], sampled with a
spiral distribution on the input space, with 400 points used for training, λ =
0, 5 Cmax=40 (SHEM)

From the analysis of the results appears an evident better performance of the
suggested approach which ensure a consistent improvement of the error ratio
(SNR) particularly for the second and third cases (which have major complex-
ity).

4.3 Prediction problem

Another real world application concerns the prediction performed, for ex-
ample, on environmental time series [M. Panella, 2001]. In particular we con-
sidered three sequences: the Acoustic Noise and Ozone level (acquired sam-
pling the observation data every 5 minutes); the Electric Load required in a
particular region (sampling every hour) and at last the Mackey Glass (a bench-
mark series):

It is evident, examining the table, that the suggested method performs a
better results in the most of the cases, expecially in the Electric Load sequence
and in the benchmark one.

4.4 Noise filtering

To evaluate the capability of the algorithm to reconstruct original data set
it has been tested on imaging applications. In particular the elaboration has
concerned the well known image “Lena”. Gaussian noise has been added on
this image (variable from a SNR of 10 db to 25 db) and the purpose was to rate
the gain of the restored image. The algorithm SHEM provided a training on

test
functions

result 95% method result gap method

y = Ca

1+e−CbX2
+ 0, 45(x2 − 5) 30,973 db 30,973 db

y = Cc sin2
(
2π (5−x1)2+(5−x2)2

10

)
7,9718 db 8,4158 db

y = Cd
(5−x2)2

3(5−x1)2+(5−x2)2
16,771 db 21,261 db

Acoustic
Noise

Ozone
Electric

Load
Mackey
Glass

95% method 25,539 db 21,569 db 25,955 db 35,854 db
gap method 23,39 db 21,604 db 28,801 db 37,201 db
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the full size image and it analyze a 4x4 pixel block each time to restore original
data set.

From the analysis of results it is clear how satisfying is the performance
in case of heavy noise overlaid. The improvement respect the old method
becomes more evident when the noise level is higher.
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SNR noise
25 db

SNR noise
20 db

SNR noise
15 db

SNR noise
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Abstract
Dominant sets are a new graph-theoretic concept that has proven to be rel-

evant in pairwise data clustering problems. We address the problem of group-
ing out-of-sample examples after the clustering process has taken place. This
may serve either to drastically reduce the computational burden associated to
the processing of very large data sets, or to efficiently deal with dynamic situa-
tions whereby data sets need to be updated continually. Numerical experiments
show the effectiveness of the approach.

Keywords: Unsupervised Learning, Incremental Clustering, Graphs, Game Dynamics

1. Introduction

Proximity-based, or pairwise, data clustering techniques are gaining in-
creasing popularity over traditional central grouping techniques, which are
centered around the notion of “feature” (see, e.g., [Hofmann and Buhmann,
1997; Shi and Malik, 2000]). We have recently developed a new framework
for pairwise data clustering based on a novel graph-theoretic concept, that of
a dominant set [Pavan and Pelillo, 2003a; Pavan and Pelillo, 2003b]. An in-
triguing connection between dominant sets and the solutions of a (continuous)
quadratic optimization problem allows us to use continuous optimization tech-
niques such as replicator dynamics from evolutionary game theory [Weibull,
1995]. Such systems are attractive as can be coded in a few lines of any
high-level programming language, can easily be implemented in a parallel
network of locally interacting units, thereby motivating analog VLSI imple-
mentations [Torsello and Pelillo, 2000], and offer the advantage of biological
plausibility. A nice feature of this framework is that it naturally provides a
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principled measure of a cluster’s cohesiveness as well as a measure of a vertex
participation to its assigned group. It also allows one to obtain “soft” partitions
of the input data, by allowing a point to belong to more than one cluster. The
approach has proven to be a powerful one when applied to problems such as
intensity, color, and texture segmentation, and is competitive with spectral ap-
proaches such as normalized cut [Pavan and Pelillo, 2003a; Pavan and Pelillo,
2003b].

However, a typical problem associated to pairwise grouping algorithms in
general, and hence to the dominant set framework in particular, is the scaling
behavior with the number of data. Moreover, in applications such as doc-
ument classification or visual database organization, one is confronted with
a dynamic environment which continually supplies the algorithm with newly
produced data that have to be grouped. In such situations, the trivial approach
of recomputing the complete cluster structure upon the arrival of any new item
is clearly unfeasible.

Motivated by the previous arguments, in this paper we address the problem
of efficiently assigning out-of-sample, unseen data to one or more previously
determined clusters. This may serve either to substantially reduce the compu-
tational burden associated to the processing of very large (though static) data
sets, by extrapolating the complete grouping solution from a small number of
samples, or to deal with dynamic situations whereby data sets need to be up-
dated continually. We shall see that the very notion of a dominant set, thanks
to its clear combinatorial properties, offers a simple and efficient solution to
this problem. The basic idea consists of computing, for any new example, a
quantity which measures the degree of cluster membership, and we provide
simple approximations which allow us to do this in linear time and space, with
respect to the cluster size. Our classification schema inherits the main features
of the dominant set formulation, i.e., the ability of yielding a soft classification
of the input data and of providing principled measures for cluster membership
and cohesiveness.

2. Finding Dominant Sets by Game Dynamics

We represent the data to be clustered as an undirected edge-weighted (sim-
ilarity) graph with no self-loops G = (V, E, w), where V = {1, . . . , n} is
the vertex set, E ⊆ V × V is the edge set, and w : E → IR∗

+ is the (pos-
itive) weight function. Vertices in G correspond to data points, edges repre-
sent neighborhood relationships, and edge-weights reflect similarity between
pairs of linked vertices. As customary, we represent the graph G with the
corresponding weighted adjacency (or similarity) matrix, which is the n × n
nonnegative, symmetric matrix A = (aij) defined as:
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Figure 1. An example edge-weighted graph. Note that w{1,2,3,4} (1) < 0 and this reflects
the fact that vertex 1 is loosely coupled to vertices 2, 3 and 4. Conversely, w{5,6,7,8} (5) > 0
and this reflects the fact that vertex 5 is tightly coupled with vertices 6, 7, and 8.

aij =
{

w(i, j) , if (i, j) ∈ E
0 , otherwise .

Let S ⊆ V be a non-empty subset of vertices and i ∈ V . The (average)
weighted degree of i w.r.t. S is defined as awdegS (i) = 1

|S|
∑

j∈S aij , where
|S| denotes the cardinality of S.

Moreover, if j /∈ S we define φS (i, j) = aij − awdegS (i), which is a
measure of the similarity between nodes j and i, with respect to the average
similarity between node i and its neighbors in S.

Let S ⊆ V be a non-empty subset of vertices and i ∈ S. The weight of i
w.r.t. S is

wS (i) =

⎧⎪⎨⎪⎩
1, if |S| = 1∑
j∈S\{i}

φS\{i} (j, i)wS\{i} (j) , otherwise (1)

while the total weight of S is defined as W(S) =
∑

i∈S wS(i) . Intuitively,
wS (i) gives us a measure of the overall similarity between vertex i and the
vertices of S \ {i} with respect to the overall similarity among the vertices in
S \ {i}, with positive values indicating high internal coherency (see Fig. 1).

An alternative, useful way of computing the wS (i)’s (when |S| > 1) is
given by the following formula [Pavan and Pelillo, 2003a]:

wS (i) =
∑

j∈S\{i}
(aij − ahj) wS\{i} (j) (2)

where h is an arbitrary element of S \ {i} (it can be shown that the sum in (2)
does not depend upon the choice of h).

A non-empty subset of vertices S ⊆ V such that W (T ) > 0 for any non-
empty T ⊆ S, is said to be dominant if:

1 wS (i) > 0, for all i ∈ S

2 wS∪{i} (i) < 0, for all i /∈ S.
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The two previous conditions correspond to the two main properties of a cluster:
the first regards internal homogeneity, whereas the second regards external in-
homogeneity. The above definition represents our formalization of the concept
of a cluster in an edge-weighted graph.

Now, consider the following quadratic program (here and in the sequel a dot
denotes the standard scalar product between vectors):

maximize f(x) = x ·Ax
subject to x ∈ Δn

(3)

where Δn = {x ∈ IRn : xi ≥ 0 for all i ∈ V and e · x = 1} is the
standard simplex of IRn, and e is a vector of appropriate length consisting
of unit entries (hence e · x =

∑
i xi). The support of a vector x ∈ Δn is

defined as the set of indices corresponding to its positive components, that is
σ (x) = {i ∈ V : xi > 0}. The following theorem, proved in [Pavan and
Pelillo, 2003a], establishes an intriguing connection between dominant sets
and local solutions of program (3).

Theorem 1 If S is a dominant subset of vertices, then its (weighted) char-
acteristics vector xS , which is the vector of Δn defined as

xS
i =

{
wS(i)
W(S) , if i ∈ S

0, otherwise
(4)

is a strict local solution of program (3). Conversely, if x is a strict local solu-
tion of program (3) then its support S = σ(x) is a dominant set, provided that
wS∪{i} (i) 	= 0 for all i /∈ S.

Note that the components of the weighted characteristic vectors give us a
natural measure of the participation of the corresponding vertices in the cluster,
whereas the value of the objective function measures the cohesiveness of the
class. In order to get a partition of the input data into coherent groups, a simple
approach is to iteratively finding a dominant set and then removing it from the
graph, until all vertices have been grouped. On the other hand, by finding all
dominant sets, i.e., local solutions of (3), of the original graph, one can obtain
a “soft” partition of the dataset, whereby clusters are allowed to overlap.

The continuous optimization method we use to solve problem (3) is called
replicator equations, a class of dynamical systems arising in evolutionary game
theory [Weibull, 1995]. In particular, we use the following discrete-time model:

xi(t + 1) = xi(t)
(Ax(t))i

x(t) ·Ax(t)
. (5)

for i = 1 . . . n, which corresponds to a well-known discretization of first-
order replicator equations (see, e.g., [Weibull, 1995]). It is readily seen that
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the simplex Δn is invariant under these dynamics, which means that every
trajectory starting in Δn will remain in Δn for all future times. Moreover, it can
be proved that, since A is symmetric, the objective function f(x) = x · Ax of
program (3) is strictly increasing along any nonconstant trajectory of replicator
equations (5) [Weibull, 1995].

3. Predicting Cluster Membership for Out-of-Sample
Data

Suppose we are given a set V of n unlabeled items and let G = (V, E, w)
denote the corresponding similarity graph. After determining the dominant
sets (i.e., the clusters) for these original data, we are next supplied with a set
V ′ of k new data items, together with all kn pairwise affinities between the
old and the new data, and are asked to assign each of them to one or possibly
more previously determined clusters. We shall denote by Ĝ = (V̂ , Ê, ŵ), with
V̂ = V ∪V ′, the similarity graph built upon all the n+k data. Note that in our
approach we do not need the

(
k
2

)
affinities between the new points, which is a

nice feature as in most applications k is typically very large. Technically, Ĝ is a
supergraph of G, namely a graph having V ⊆ V̂ , E ⊆ Ê and w(i, j) = ŵ(i, j)
for all (i, j) ∈ E.

Let S ⊆ V be a subset of vertices which is dominant in the original graph G
and let i ∈ V̂ \ V be a new data point. As pointed out in the previous section,
the sign of wS∪{i} (i) provides an indication as to whether i is tightly or loosely
coupled with the vertices in S (the condition wS∪{i} (i) = 0 corresponds to a
non-generic boundary situation that does not arise in practice and will therefore
be ignored).

Accordingly, it is natural to propose the following rule for predicting cluster
membership of unseen data:

if wS∪{i} (i) > 0, then assign vertex i to cluster S . (6)

Note that, according to this rule, the same point can be assigned to more than
one class, thereby yielding a soft partition of the input data. To get a hard
partition one can use the cluster membership approximation measures we shall
discuss below. Note that it may also happen for some instance i that no cluster
S satisfies rule (6), in which case the point gets unclassified (or assigned to
an “outlier” group). This should be interpreted as an indication that either the
point is too noisy or that the cluster formation process was inaccurate. In our
experience, however, this situation arises rarely.

The next result allows us to compute the sign of wS∪{i} (i) in linear time
and space, with respect to the size of S.

Proposition 1 Let G = (V, E, w) be an edge-weighted (similarity) graph,
A = (aij) its weighted adjacency matrix, and S ⊆ V a dominant set of G
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with characteristic vector xS . Let Ĝ = (V̂ , Ê, ŵ) be a supergraph of G with
weighted adjacency matrix Â = (âij). Then, for all i ∈ V̂ \ V , we have:

wS∪{i} (i) > 0 ⇔
∑
j∈S

âijx
S
j > f(xS) . (7)

Proof: According to equation (2) we have:

wS∪{i} (i) =
∑
j∈S

(âij − ahj) wS (j) (8)

for any h ∈ S (note that âhj = ahj because both h and j are vertices of S).
Dividing by W (S), which is non-zero because S is dominant, and recalling
the definition of a characteristic vector we get:

wS∪{i} (i)
W(S)

=
∑
j∈S

(âij − ahj)xS
j (9)

It is immediate to see that the Karush-Kuhn-Tucker (KKT) equality conditions
for program (3), i.e., the first-order necessary equality conditions for local op-
timality [Luenberger, 1984], imply

∑
j∈S ahjx

S
j = xS ·AxS = f(xS) for any

h ∈ S [Pavan and Pelillo, 2003a]. Hence, the proposition follows from the fact
that, being S dominant, W (S) is positive.

Given an out-of-sample vertex i and a class S such that rule (6) holds, we
now provide an approximation of the degree of participation of i in S ∪ {i}
which, as pointed out in the previous section, is given by the ratio between
wS∪{i} (i) and W(S ∪ {i}). This can be used, for example, to get a hard par-
tition of the input data when an instance happens to be assigned to more than
one class. By equation (9), we have:

wS∪{i} (i)
W(S ∪ {i}) =

∑
h∈S

(âhi − ahj)xS
h

W(S)
W(S ∪ {i})

for any j ∈ S. Since computing the exact value of the ratio W(S)/W(S∪{i})
would be computationally expensive, we now provide simple approximation
formulas. Since S is dominant, it is reasonable to assume that all weights
within it are close to each other. Hence, we approximate S with a clique having
constant weight a, and impose that it has the same cohesiveness value f(xS) =
xS ·AxS as the original dominant set. After some algebra, we get

a =
|S|

|S| − 1
f(xS)
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which yields W(S) ≈ |S|a|S|−1. Approximating W(S ∪ {i}) with |S + 1|a|S|
in a similar way, we get:

W(S)
W(S ∪ {i}) ≈

|S|a|S|−1

|S + 1|a|S| =
1

f(xS)
|S| − 1
|S|+ 1

which finally yields:

wS∪{i} (i)
W(S ∪ {i}) ≈

|S| − 1
|S|+ 1

(∑
h∈S âhix

S
h

f(xS)
− 1

)
.

Using the above formula one can easily get, by normalization, an approx-
imation of the characteristic vector xŜ ∈ Δn+k of Ŝ = S ∪ {i ∈ V̂ \ V :
wS∪{i} (i) > 0}, i.e. the extension of cluster S obtained applying rule (6).

With an approximation of xŜ in hand, it is also easy to compute an approxima-
tion of the cohesiveness of the new cluster Ŝ, i.e., xŜ · ÂxŜ . Indeed, assuming
that Ŝ is dominant in Ĝ, and recalling the KKT equality conditions for pro-
gram (3) [Pavan and Pelillo, 2003a], we get (ÂxŜ)i = xŜ · ÂxŜ for all i ∈ Ŝ.
It is therefore natural to approximate the cohesiveness of Ŝ as a weighted av-
erage of the (ÂxŜ)i’s.

4. Results and Conclusions

In an attempt to evaluate how the approximations given at the end of the pre-
vious section actually compare to the solutions obtained on the dense problem,
we conducted the following preliminary experiment. We generated 150 points
on the plane so as to form a dominant set (we used a standard Gaussian kernel
to obtain similarities), and extracted random samples with increasing sampling
rate (i.e., sampling probability), ranging from 1/15 to 1. For each sampling
rate 100 trials were made, for each of which we computed the Euclidean dis-
tance between the approximated and the actual characteristic vector (i.e., clus-
ter membership), as well as the distance between the approximated and the ac-
tual cluster cohesiveness (that is, the value of the objective function f ). Fig. 2
shows the average results obtained. As can be seen, our approximations work
remarkably well: with a sampling rate less than 10 % the distance between
the characteristic vectors is around 0.02 and this distance decreases linearly to-
wards zero. As for the objective function, the results are even more impressive
as the distance from the exact value (i.e., 0.989) rapidly goes to zero starting
from 0.00025, at less than 10% rate. Also, note how the CPU time increases
linearly as the sampling rate approaches 100%.

Next, we tested our algorithm over the Johns Hopkins University ionosphere
database1 which contains 351 labeled instances from two different classes. As
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Figure 2. Evaluating the quality of our approximations on a 150-point cluster. Top: average
distance between approximated and actual cluster membership (left) and cohesiveness (right) as
a function of sampling rate. Bottom: average CPU time as a function of sampling rate.
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Figure 3. Results on the ionosphere database. Average classification rate (left) and CPU time
(right) as a function of sampling rate.

in the previous experiment, similarities were computed using a Gaussian ker-
nel. Our goal was to test how the solutions obtained on the sampled graph
compare with those of the original, dense problem and to study how the per-
formance of the algorithm scales w.r.t. the sampling rate. As before, we used
sampling rates from 1/15 to 1, and for each such value 100 random samples
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were extracted. After the grouping process, the out-of-sample instances were
assigned to one of the two classes found using rule (6). Then, for each ex-
ample in the dataset a “success” was recorded whenever the actual class label
of the instance coincided with the majority label of its assigned class. Fig. 3
shows the average results obtained. At around 40% rate the algorithm was al-
ready able to obtain a classification accuracy of about 73.4%, which is even
slightly higher that the one obtained on the dense (100% rate) problem, which
is 72.7%. Note that, as in the previous experiment, the algorithm appears to be
robust with respect to the choice of the sample data. For the sake of comparison
we also ran normalized cut on the whole dataset, and it yielded a classification
rate of 72.4%.

In this paper, we have provided a simple and efficient extension to the
dominant-set clustering framework to deal with the grouping of out-of-sample
data. Experiments show that the solutions extrapolated from the sparse data
are comparable with those of the dense problem and are obtained in much less
time.

Notes

1. http://www.ics.uci.edu/∼mlearn/MLSummary.html
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Abstract
One way of using the entropy criteria in learning systems is to minimize the

entropy of the error between two variables: typically, one is the output of the
learning system and the other is the target. This framework has been used for
regression. In this paper we show how to use the minimization of the entropy of
the error for classification.
The minimization of the entropy of the error implies a constant value for the
errors. This, in general, does not imply that the value of the errors is zero. In
regression, this problem is solved by making a shift of the final result such that
it’s average equals the average value of the desired target. We prove that, under
mild conditions, this algorithm, when used in a classification problem, makes
the error converge to zero and can thus be used in classification.

Keywords: Classification, Information Theoretic Learning, Renyi’s Quadratic Entropy, Cost
Function

1. Introduction

Since the introduction by Shanon of the concept of entropy [Shannon, 1948],
and the posterior generalization made by Renyi in [Renyi, 1976], that entropy
and information theory concepts have been applied in learning systems.
Shanon’s entropy HS(x) = −∑N

i=1 pilogpi measures the average amount of
information conveyed by the random variable x whose N possible values oc-
cur with probability pi. An extension of the entropy concept to continuous
random variables x ∈ C is: H(x) = −

∫
C f(x)logf(x)dx where f(x) is the

probability density function (pdf) of the variable x.
The use of entropy and relative concepts have several applications in learning
systems. These applications are mostly based on finding the mutual informa-
tion and the consequent relations between the distributions of the variables
involved in a particular problem. Linsker proposed the Infomax principle that
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consists on the maximization of Mutual Information between the input and the
output of the neural network [Linsker, 1998]. Mutual information gives rise to
either unsupervised or supervised learning rules depending on how the prob-
lem is formulated. We can have unsupervised learning when we manipulate the
mutual information between the outputs of the learning system or between its
input and output. Examples of these approaches are independent component
analysis and blind source separation [Amari et al., 1996], [Bell and Sejnowski,
1995]. If the goal is to maximize the mutual information between the output of
a mapper and an external desired response, then learning becomes supervised.

With the goal of making supervised information-theoretic learning, several
approaches have been proposed:1 - The CIP (Cross Information Potential) tries
to establish the relation between the pdfs of two variables. These variables
could be the output of the network and the desired targets or the output of
each layer and the desired targets [Xu and Príncipe, 1999]. 2- The entropy
maximization of the output of the network and simultaneously the minimiza-
tion of the entropy of the output of the data that belongs to a specific class.
This method was proposed in [Haselsteiner and Príncipe, 2000] as a way of
performing supervised learning without numerical targets. 3 - The MEE that
consists of the minimization of the error entropy between the outputs of the
network and the desired targets. This approach was proposed in [Erdogmus
and Princípe, 2002] and used to make times series prediction.

We made some experiments with these proposed three methods with the
goal of performing supervised classification but we did not achieve good re-
sults. This lead us to develop a new approach as described below.

2. Renyi’s Quadratic Entropy and Back-propagation
Algorithm

Renyi extended the concept of entropy and defined the Renyi’s α entropy,
in discrete cases, as:

HRα(x) =
1

1− α
log

(
N∑

i=1

pα
i

)
(1)

which tends to Shanon entropy when α → 1. If we take the Renyi’s Quadratic
Entropy (α = 2), to continuous random variables, we obtain

HR2(x) = − log
(∫

C
[f(x)]2dx

)
(2)

Renyi’s Quadratic Entropy in conjunction with the Parzen Window probability
density function estimation with gaussian kernel allows the determination of
the entropy in a non-parametric and computationally efficient way.
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Let a = ai ∈ R
m, i = 1, ..., N , be a set of samples from the output Y ∈ R

m

of a mapping R
n �→ R

m : Y = g(w, x), where w is a set of Neural Network
weights.
The Parzen window method estimates the pdf f(y) as

f(x) =
1

Nhm

N∑
i=1

K(
x− xi

h
) (3)

where N is the number of data points, K is a kernel function, and h the
bandwidth or smoothing parameter. If we use the simple Gaussian kernel
G(y, I) = 1

(2π)
m
2

exp
(
−1

2yT y
)
, (being I the identity matrix), then, the esti-

mated pdf f(y) using Parzen window and Gaussian kernel will be:

f(y) =
1

Nhm

N∑
i=1

G

(
y − ai

h
, I

)
(4)

The Renyi’s Quadratic Entropy can be estimated, applying the integration of
gaussian kernels [Xu and Príncipe, 1999], by

ĤR2(y) = − log

⎡⎣∫ +∞

−∞

(
1

Nhm

N∑
i=1

G(
y − ai

h
, I)

)2

dx

⎤⎦
= − log

⎡⎣ 1
N2h2m−1

N∑
i=1

N∑
j=1

G(
ai − aj

h
, 2I)

⎤⎦ = − log V (a)

(5)

Príncipe calls V (a) the information potential [Príncipe et al., 1998] in ana-
logy with the potential field in physics. For the same reason he also calls the
derivative of V (a) the information force F . Therefore

F =
∂

∂a
V (a) =

∂

∂a

⎡⎣ 1
N2h2m−1

N∑
i=1

N∑
j=1

G(
ai − aj

h
, 2I)

⎤⎦
Fi = − 1

2Nh2m+1

N∑
j=1

G(
ai − aj

h
, 2I)(ai − aj)

(6)

This information force is back-propagated into the MLP the same way as in the
MSE algorithm. The update of the neural network weights is performed using
Δw = ±η ∂V

∂w . The ± means that we can maximize (+) or minimize (−) the
entropy.

Neural Network Classification using Error Entropy Minimization
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3. Supervised Classification with Error Entropy
Minimization

We make use of the information-theoretic concepts, applying an entropy
approach to the classification task using the entropy minimization of the error
between the output of the network and the desired targets: the Error Entropy
Minimization, EEM.

Let d ∈ R
m be the desired targets and Y the network output from the classi-

fication problem and ei = di−Yi the error for each data sample i of a given data
set. The error entropy minimization approach [Erdogmus and Princípe, 2002]
states that Renyi’s Quadratic Entropy of the error, with pdf approximated by
Parzen window with Gaussian kernel, has minima along the line where the
error is constant over the whole data set. Also the global minimum of this en-
tropy is achieved when the pdf of the error is a Dirac delta function.
Taking the quadratic entropy of the error

ĤR2 = − log

⎡⎣ 1
N2h2m

N∑
i=1

N∑
j=1

G

(
ei − ej

h2

)⎤⎦ (7)

we clearly see that this entropy will be minimum when the diferences of all the
error pairs (ei − ej) are zero. This means that the errors are all the same. In
classification problems with separable classes, the goal is to get all the errors
equal to zero, meaning that we don’t get any errors in the classification. In
classification problems with non separable classes the goal is to achieve the
Bayes error.
In the following we prove that, in classification problems, imposing some con-
ditions to the output range and target values, the EEM algorithm makes the
error converge to zero. The objective is to minimize the entropy of the error
e = d − Y and, as stated above, to achieve the goal of e = 0 for all data
samples.

Theorem 1 Consider a two class supervised classification problem with a
unidimensional output vector. Y ∈ [r, s] is the output of the network and
d ∈ {a, b} the target vector or the desired output. If r = a, s = b and a = −b
then the application of the EEM algorithm makes the errors on each data point
be equal and equal to zero.

Proof: Define the targets as d ∈ {−a, a} and consider the output of the net-
work as Y ∈ [−a, a]. The errors are given by e = d− Y .
If the true target for a given input xi is {a} then the error ei varies in P = [0, 2a].
If the true target for a given input xj is {−a} then the error ej varies in
Q = [−2a, 0].
Since the minimization of the entropy of the error makes the errors all have the
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same value, r, we get ei = ej = r.
r must be in P and Q. P ∩Q = {0} thus r = 0 and ei = ej = 0. �

A similar proof can be made for multidimensional data samples.
By minimizing the Renyi’s Quadratic Entropy of the error, applying the back-
propagation algorithm, we find the weights of the neural network that yield
good results in classification problems as we illustrate in the next section.

4. Experiments

We made two experiments, using multilayer perceptrons (MLP), to show
the application of the EEM algorithm to data classification. The learning rate
η and the smoothing parameter h were experimentally selected. However this
is one subject that must be studied with more detail in our subsequent work.

In the first experiment we created a data set consisting of 200 data points,
constituting 4 separable classes (figure 1).
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Figure 1 Dataset for the first
problem

Several (2;n;2) MLP’s were trained and tested 40 times, 150 epochs, using
EEM and also for MSE. We made n vary from 3 to 6. Each time, half of the
data set was used for training and the other half for testing. The results of the
first experiment are shown in table 1.

Table 1. The error results of the first experiment

In the second experiment we used the well known Fisher’s IRIS data set. It
consists of 3 classes, 4 numeric attributes, 150 instances. One class is linearly

Neural Network Classification using Error Entropy Minimization

n=3 4 5 6 std
EEM 2.43 ± 1.33 2.20 ± 1.20 2.01 ± 1.09 2.09 ± 1.02 0.18
MSE 2.93 ± 1.46 2.55 ± 1.24 2.64 ± 1.13 2.91 ± 1.73 0.19



296

separable from the other two, but the other two are not linearly separable from
each other.

Several (2;n;2) MLP’s were trained and tested 40 times, 150 epochs, for
EEM and also for MSE. We made n varying from 3 to 8. Each time, half of
the data set was used for training and the other half for testing. The results of
the second experiment are shown in table 2.

Table 2. The error results for IRIS data set

The results show, in almost every experiments, a small, but better, perfor-
mance of the EEM algorithm. They also show, especially in the second exper-
iment, that the variation of the error along n is smaller in the EEM than in the
MSE (std - tables last column). This could mean that the relation between the
complexity of the MLP and the results of the EEM algorithm is not so tight as
for the MSE algorithm, although this relation must be studied with more detail
in our future work.

5. Conclusions

We have presented, in this paper, a new way of performing classification by
using the entropy of the error between the output of the MLP and the desired
targets, as the function to minimize. The results show that this is a valid ap-
proach for classification and, despite the small diference comparing to MSE,
we expect to achieve better results in high dimensional data. The complexity
of the algorithm, (N2), imposes some limitations on the number of samples in
order to get results in a reasonable time. Some aspects in the implementation
of the algorithm will be studied in detail in our future work: how to choose
h and η and make their values adjust during the training phase to improve the
classification performance. We have already tested the adjustment of h during
the training phase, but we did not achieved good results. We know that the
variation of η during the training process improves the performance [Silva and
Almeida, 1990]. So, we plan to adjust η as a function of the error entropy
instead of adjusting it as a function of the MSE.

n=3 4 5 6 7 8 std
EEM 4.37±1.12 4.43±1.30 4.38±1.34 4.30±1,16 4.42±1,42 4.32±1.27 0.05
MSE 4.72±4.75 4.75±1.27 4.15±1.32 3.97±1,05 5.18±4,74 4.65±1.32 0.44
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Abstract Detecting regions of change in multiple images of the same scene taken at dif-
ferent times is of widespread interest due to a large number of applications in
diverse disciplines, including remote sensing, surveillance, medical diagnosis
and treatment, civil infrastructure, and underwater sensing.

The paper proposes a data dependent change detection approach based on
textural features extracted by the Independent Component Analysis (ICA) model.
The properties of ICA allow to create energy features for computing multispec-
tral and multitemporal difference images to be classified. Our experiments on
remote sensing images show that the proposed method can efficiently and effec-
tively classify temporal discontinuities corresponding to changed areas over the
observed scenes.

1. Introduction

Automatic change detection in images of a given scene acquired at differ-
ent times is one of the most interesting topics of image processing. Impor-
tant applications of change detection include video surveillance [Collins et al.,
2000; Stauffer and Grimson, 2000; Wren et al., 1997], remote sensing [Bruz-
zone and Prieto, 2002; Collins and Woodcock, 1996; Huertas and Nevatia,
2000], medical diagnosis and treatment [Bosc et al., 2003; Dumskyj et al.,
1996; Lemieux et al., 1998; Rey et al., 2002; Thirion and Calmon, 1999],
civil infrastructure [Landis et al., 1999; Nagy et al., 2001], underwater sensing
[Edgington et al., 2003; Lebart et al., 2000; Whorff and Griffing, 1992] and
driver assistance systems [Fang et al., 2003; Kan et al., 1996]. Despite the
diversity of applications, change detection researchers employ many common
processing steps and core algorithms.

The core problem is as follows. We are given a set of images of the same
scene taken at several different times. The goal is to identify the set of pixels
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that are significantly different between the last image of the sequence and the
previous images; these pixels comprise the change mask. The change mask
may result from a combination of underlying factors, including appearance
or disappearance of objects, motion of objects relative to the background, or
shape changes of objects. In addition, stationary objects can undergo changes
in brightness or color. A key issue is that the change mask should not contain
unimportant or nuisance forms of change, such as those induced by camera
motion, sensor noise, illumination variation, non-uniform attenuation, or at-
mospheric absorption. The notions of significantly different and unimportant
vary by application, which sometimes makes it difficult to directly compare
algorithms.

Several techniques for detecting changes, specially in remote-sensing im-
ages, have been proposed (see for instance the surveys made by Singh [Singh,
1989]). Two principal categories of techniques may be distinguished: super-
vised and unsupervised. The former requires the availability of a ground truth
from which a training set of information about the spectral signature of the
changes occurred in the considered area between the two dates could be de-
rived. Instead, the latter require just the considered images.

Therefore, from an practical standpoint, it is clear that using unsupervised
techniques is mandatory in many applications, since suitable ground-truth in-
formation is not always available. All unsupervised approach are divided in
three steps [Bruzzone and Prieto, 2002]:

1 preprocessing: at this stage, it is necessary to make perfectly aligned the
images to be compared, in both the spatial and the spectral domains. For
the spatial domain, the images should be co-registered so that pixels with
the same coordinates in the images may be associated with the same area
on the ground. Moreover, accurate spatial calibration, as for example
that reported in [P.S. Chavez, 1989; Slater, 1987], should be performed
in order to correct illumination changes and atmospheric conditions be-
tween the two acquisition times.

2 image comparison: the co-registered images are compared in a pixel-
wise fashion to generate the so-called difference image which evidenced
temporal discontinuities [Singh, 1989].

3 analysis of the difference image: changes can be detected applying a
threshold value to the histogram of the difference image. The choice
of appropriate threshold value can be done in different ways, although
generally made by using non-automatic heuristic strategies [Fung and
LeDrew, 1988].

Image analysis problems, such as chenge detection, always require the adop-
tion of image models wich can be used to study the statistical relations between
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image patches. Frequency models such as Fourier representations and spatial-
frequency approaches such as wavelet representations constitute an efficient
tool for modeling large number of different images. However, it is well known
that the adoption adaptive approaches, where the model parameters adapt to the
statical properties of the image data, can give better results [Lee and Lewinksy,
2002]. These adaptive approaches often require a learning phase where image
samples are used to compute a new set of basis vectors for representing im-
ages. Principal Component Analysis is the simples and most commoly used
linear adaptive model. Recently, Independent Component Analysis (ICA) has
been proposed as a generic statistical model for images [Harinen et al., 2001].
It is aimed at capturing the statistical structure in images that is beyond second
order information, by exploiting higher-order statistical structure in data. ICA
finds a linear nonorthogonal coordinate system in multivariate data determined
by second- and higher-order statistics. The goal of ICA is to linearly transform
the data such that the transformed variables are as statistically independent
from each other as possible. ICA generalizes PCA and, like PCA, has proven
a useful tool for finding structure in data.

Here we adopt the ICA image model to generate a data dependent filter bank
for change detection in multispectral images. The filter bank consists of the
ICA basis images, learned from images. These basis images are able to capture
the underlying structure of the analyzed scenes, and hence enable us to create
features. Our ICA based approach to change detection is aimed at detection of
temporal discontinuities in the textural representation of multispectral image
patches.

2. ICA Learning and Image Classification

The way we use the ICA model belongs to the so-called filtering method.
The basic idea in the filtering methods is that a composite textured image is
filtered through a bank of filters, and appropriate features for texture segmen-
tation are generated based on the filter outputs (see for instance [Randen and
Husoy, 1999; Ceccarelli and Petrosino, ; Turner, 1986]).

These filters are used to generate energy features for texture description and
analysis [Jain and Farrokhnia, 1991]. Here, we use the ICA statistical model
for a data dependent textural feature description.

The underlying statistical image model in ICA is based on the assumption
that an image I can be decomposed into the sum of a set of basis functions
multiplied by independent random coefficients:

I(x, y) =
∑

i

bi(x, y)si. (1)
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By reshaping the image as a column vector, x, it is easy to realize that equation
(1) can be rewritten as

x = As (2)

which is the well known linear ICA model, where x is the vector of observed
variables, s is the vector of latent variables, called the independent components
or source signals, and A is an unknown constant matrix, called the mixing
matrix. The columns a1, ...,aN of the mixing matrix A are the basis vectors
or features of image windows. The matrix A is learnt from observations. The
basic idea behind the learning algorithm is to find a linear transformation y =
W+x yielding a vector whose components are statistically independent. The
matrix W+ is the pseudo-inverse of A. To estimate such matrix we used the
FastICA algorithm [A. and E., 1997], which also includes a PCA preprocessing
step for whitening the data.

ICA Extraction from Multispectral Images

Our approach to change detection is based on classifying the difference of
the features extracted from multitemporal images. As said before, the fea-
tures are extracted according to the ICA model. As usual in image and sig-
nal processing, if the column vectors of the mixing matrix are considered as
basis functions, the coefficients that express the observed data as function of
the adopted basis are considered as features. Therefore, given two images I1

and I2, we classify the difference between the features extracted from each of
them. To do this, we have to exactly state what we consider an observation and
how the learning phase is performed in order to make the comparison between
features possible.

For the case of change detection, the raw difference between pixel lumi-
nance is not enough for efficiently classifying the changes in images, espe-
cially for multispectral images. This is due to the difference in conditions and
acquisition setup that can be months or years time apart. Therefore, an effi-
cient change detection tool should be able to extract textural information from
the images under study. Contextual information carried out by the neighbor-
ing values for each analyzed pixel typically contributes in a significant manner
to the textural information. Hence, the image is divided into m × m over-
lapping patches. We experimentally verified that for our study, using Landsat
multispectral images, patch dimensions of 9× 9 represent a good compromise
between description accuracy and computational efficiency. In order to ex-
tract the features from different images in an homogeneous manner, we run the
learning algorithm over a set of randomly selected patches for all the images
of the same scene at our disposal (see figure 1). Being the image multispectral
(in our case 7-band images), each observation consists into a column vector
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x obtained by stacking the m ×m patches for all b bands centered at a given
pixel.

In more details, we extract one vector of observation from each of the dif-
ferent bands, and put them together, in the following manner:

X = [x1; ...;xN ] (3)

In this way, the extraction of features is performed on information carried out
by each band at the same area. The learning algorithm, applied to this vector,
produces the mixing matrix A, and the vector of the independent components
s. If n is the number of all the possible patches that we can extract from an
image, we obtain the same number of vectors of observation, which we can
put together, in order to obtain a (m×m× b)×n matrix of observation X , as
we can see in figure 2, where each vector xi is obtained as described above.

To avoid that the Independent Components depend upon differences in both
the matrix W+ and X , we impose that the matrix W+ is the same for both
images to be compared. To this end, we run the learning algorithm over the set
of data obtained by putting together all the observation matrices, obtained for
each scene at disposal, in order to create a matrix containing information given
by all scenes:

X = [X1, ...,XN ] (4)

After applying the learning algorithm on this matrix, we obtain the mixing
matrix A and the transformation W+, which we can use to generate, in this
case, a coefficient matrix S:

S = W+X (5)

As S gets the same dimension of X , if we make the inverse of the transfor-
mation used to extract the vector x, we can obtain an image having the same
dimension of the original scene. We can define this image as coefficient image.
In particular, each point of it indicates the weight given to the corresponding
basis vector. Therefore, the comparison of two coefficient images let us to
evaluate the textural differences between them. Given two matrices X1 and
X2, the equation (5) transforms them by the same basis of representation, then
the matrices S1 and S2 (and relative coefficient images) present differences
due only to the textural features of the original images. Finally, by compar-
ing two coefficient images we are able to estimate the changes occurred on
the considered scene in the period between the two acquisitions. In particular,
the comparison is based on the difference between the two coefficient images
within each image patch:

s =
1
n2

m2∑
i=1

| s1i − s2i |2, (6)
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where:

- s1 and s2 are the coefficient vectors relative to a couple of corresponding
patches, one for each image;

- s is the value associated to the corresponding point of the difference
image.

If we apply the equation(6) to all corresponding patches that it is possible to
extract from the images, we obtain the entire difference image.

Difference Image Classification

The final step of our approach is to analise the difference image, obtained
by the steps described in the previous subsection. Specifically, the difference
image is characterized by grey-level values, each one defining a degree of dif-
ference. Thus, it is necessary to define the minimum value of change, value
that defines the accuracy of the approach, and that nearly depends on the par-
ticular application under study. This value is the threshold value, which, once
fixed, distinguishes the whole set of pixels in two subsets:

- changed pixels: all pixels whose value is greater than the threshold
value;

- unchanged pixels: all pixels whose value is less than threshold value.

Therefore the classification process results into a binary image. Several tech-
niques have been proposed for choosing a suitable thresholding value [Fung
and LeDrew, 1988]. Here we adopt an heuristic technique, by setting as thresh-
old the value:

threshold =
min + max

7
(7)

where min and max represent the lower and the higher grey-level values re-
spectively, which demonstrated to give good performance among several test
values.

3. Preliminary Results

Here we want to demonstrate the behavior or our methods on the temporal
analysis of the images in figure (1) which represents three images of the same
scene acquired in August 1999, 2000 and 2001. In particular, we take as refer-
ence image that acquired in 2000, and we want to analyze the differences with
the others.
Applying the reported method, a qualitative analysis of these images leads to
the results shown in figure 3. These images are characterized by two types of
areas: black, which corresponds to an unchanged area between the two images;
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Table 1. Obtained results with simulated changes as function of the noise percentage, and
comparison with the CNT approach

white, which represents a changed area. Some details are reported in figure 4
which evidence how the white areas effectively present changes on the land
cover. These images compare some areas of the original scenes corresponding
to marked changed areas.

However, these results are not sufficient for giving a quantitative valuation
to our approach. Indeed, a quantitative analysis of the performance should
rely on a ground truth which, however, we did not have at our disposal. Such
data is typically not available in change detection studies, and its development
through ground campaign can be very expensive. For the purpouses of this
paper we artificially appled a texture-based random alteration between similar
images and measured the percentage of corret pixels classified as changed in
the area affected by the alteration. This measure is taken as function of the
amount of random noise of alteration of each pixel. In particular, once selected
a specific area to altered we apply the following multiplicative noise:

I ′(i, j) = I(i, j) + I(i, j) ∗Δ ∗ η(i, j)

where I(i, j) is the pixel in the original image, I ′(i.j) is the altered value, Δ is
noise percentage percentage (in our experiments we set Δ = .2, .4, .6, .8) and
η(i, j) is just an uniform random value in [0, 1]. The obtained results are sum-
marized in Table 1 and compared with the classical nonautomatic thresholding
(CNT) approach [Bruzzone and Prieto, 2002]. As we can see the algorithm
is able to efficienlty classify the whole changed area, whereas the classical
threshold based method, which dows not take into account the texture, fails at
detecting the changed pixles even in presence of high percentage opf noise.
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a)

b)

c)

Figure 1. Three multispectral images of the same scene taken at three different times. The
images are Landsat scenes of 7 bands (for visualization purposes we display just three of them).
The image a) refers to the scene taken in 1999, whereas the figures b) and c) refers respectively
to 2000 and 2001.
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Figure 2. X matrix corresponding to patches extracted from an image.

4. Conclusions

The main contribution of the paper is to show that the ICA model can be a
suitable tool for learning a vector base for feature extraction to design a fea-
ture based data dependent approach that can be efficiently adopted for image
change detection. The preliminary experimental results over real remote sens-
ing multispectral images show that the proposed method efficiently and accu-
rately detect changed areas in the observed scenes.
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1999/2000

2000/2001

Figure 3. Classified images, obtained applying the threshold value (7).
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a)

b)

Figure 4. Figure a) shows some changed areas, corresponding to differences between scenes
taken at 1999 and 2000; in the same way, figure b) shows the differences between scenes taken
at 2000 and 2001.



310

References
Bosc, M., Heitz, F., Armspach, J. P., Namer, I., Gounot, D., and Rumbach, L. (2003). Automatic

change detection in multimodal serial mri: application to multiple sclerosis lesion evolution.
Neuroimage, 20:643–656.

Bruzzone, L. and Prieto, D.F. (2002). An adaptive semiparametric and context-based approach
to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans. Im-
age Processing, 11:452–466.

Ceccarelli, N. and Petrosino, A. Multifeature adaptive classifier for sar image segmentation.
Neurocomputing, 17:345–363.

Chavez, P.S., Jr. (1989). Radiometric calibration of landsat thematic mapper multispectral im-
ages. Photogrammetric Engineering Remote Sensing, 55(9):1285–1294.

Collins, J.B. and Woodcock, C.E. (1996). An assessment of several linear change detection
techniques for mapping forest mortality using multitemporal landsat tm data. Remote Sens-
ing Environment, 56:66–77.

Collins, R., Lipton, A., and Kanade, T. (2000). Introduction to the special section on video
surveillance. IEEE Trans. Pattern Anal. Machine Intell., 22(8):745–746.

Dumskyj, M.J., Aldington, S.J., Dore, C.J., and Kohner, E. M. (1996). The accurate assessment
of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised
fundus photography. Current Eye Research, 15(6):632–652.

Edgington, D., Dirk, W., Salamy, K., Koch, C., Risi, M., and Sherlock, R. (2003). Automated
event detection in underwater video. Proc. MTS/IEEE Oceans 2003 Conference.

Fang, C.Y., Chen, S.-W., and Fuh, C.-S. (2003). Automatic change detection of driving environ-
ments in a vision-based driver assistance system. IEEE Trans. Neural Networks, 14(3):646–
657.

Fung, T. and LeDrew, E. (1988). The determination of optimal threshold levels for change de-
tection using various accuracy indices. Photogrammetric Engineering & Remote Sensing,
54(10):1449–1454.

Harinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. John Wiley
and Sons, Inc.

Huertas, A. and Nevatia, R. (2000). Detecting changes in aerial views of man-made structures.
Image and Vision Computing, 18(8):583–596.

Hyvarinen, A. and E., Oja (1997). A fast fixed-point algorithm for independent component
analysis. Neural Computation, 9:483–492.

Jain, A.K. and Farrokhnia, F. (1991). Unsupervised texture segmentation using gabor filters.
Pattern Recognition, 24(12):1167–1186.

Kan, W.Y., Krogmeier, J.V., and Doerschuk, P.C. (1996). Model-based vehicle tracking from
image sequences with an application to road surveillance. Optical Engineering, 35(6):1723–
1729.

Landis, E., Nagy, E., Keane, D., and Nagy, G. (1999). A technique to measure 3d work-of-
fracture of concrete in compression. J. Engineering Mechanics, 126(6):599–605.

Lebart, K., Trucco, E., and Lane, D.M. (2000). Real-time automatic sea-floor change detection
from video. MTS/IEEE OCEANS 2000, pages 337–343.

Lee, T.W. and Lewinksy, M.S. (2002). Unsupervised image classification, segmentation and
enhancement using ica mixute models. IEEE Trans. on Image Processing, 11(3):270–279.

Lemieux, L., Wieshmann, U., Moran, N., Fish, D., and Shorvon, S. (1998). The detection and
significance of subtle changes in mixed-signal brain lesions by serial mri scan matching and
spatial normalization. Medical Image Analysis, 2(3):227–242.



An ICA Approach to Unsupervised Change Detection in Multispectral Images 311

Nagy, G., Zhang, T., Franklin, W., Landis, E., Nagy, E., and Keane, D. (2001). Volume and
surface area distributions of cracks in concrete. Visual Form 2001 (Springer LNCS 2059),
pages 759–768.

Randen, T. and Husoy, J.H. (1999). Filtering for texture classification: A comparative study.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):291–310.

Rey, D., Subsol, G., Delingette, H., and Ayache, N. (2002). Automatic detection and segmenta-
tion of evolving processes in 3d medical images: Application to multiple sclerosis. Medical
Image Analysis, 6(2):163–179.

Singh, A. (1989). Digital change detection techniques using remotely-sensed data. Internat.
Journal of Remote Sensing, 10(6):989–1003.

Slater, P.N. (1987). Reflectance and radiance based methods for the in-flight absolute calibration
of multispectral sensors. Remote Sensing of Environment, 22:11–37.

Stauffer, C. and Grimson, W. E. L. (2000). Learning patterns of activity using real-time tracking.
IEEE Trans. Pattern Anal. Machine Intell., 22(8):747–757.

Thirion, J.-P. and Calmon, G. (1999). Deformation analysis to detect and quantify active le-
sions in three-dimensional medical image sequences. IEEE Transactions on Medical Image
Analysis, 18(5):429–441.

Turner, M. R. (1986). Texture discrimination by gabor functions. Biol. Cybern., 55:71–82.
Whorff, J. and Griffing, L. (1992). A video recording and analysis system used to sample inter-

tidal communities. Journal of Experimental Marine Biology and Ecology, 160:1–12.
Wren, C. R., Azarbayejani, A., Darrell, T., and Pentland, A. (1997). Pfinder: Real-time tracking

of the human body. IEEE Trans. Pattern Anal. Machine Intell., 19(7):780–785.



A COMPARISON OF ICA ALGORITHMS
IN BIOMEDICAL SIGNAL PROCESSING

B. Azzerboni,1 M. Ipsale,1 F. La Foresta, N. Mammone,2 F.C. Morabito2

1Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate

(azzerboni,ipsale,laforesta)@ingegneria.unime.it, URL: http://www.eltgroup.polito.it

2Dipartimento di Informatica, Matematica, Elettronica e Trasporti
Universit "Mediterranea”di Reggio Calabria, Loc. Feo di Vito, 89100 Reggio Calabria, Italy

morabito@unirc.it, URL: http://neurolab.ing.unirc.it

Abstract In the last years Independent Component Analysis (ICA) has been applied with
success in signal processing and many algorithms have been developed in or-
der to perform ICA. In this paper we review some algorithms, like INFOMAX
(Bell and Sejnowski 1995), extended-INFOMAX (Lee, Girolami and Sejniowski
1997), FastICA (OjA, and Hyv rinen 1999), that solve the ICA problem under
the assumption of the linear mixture model. We also show an overview of the
nonlinear ICA algorithms and we discuss the MISEP (Almeida 2003). In order
to test the performances of the reviewed algorithms, we present some appli-
cations of ICA in biomedical signal processing. In particular the application
of ICA to the electroencephalographic (EEG) and surface electromyographic
(sEMG) recordings are shown.

Keywords: Independent Component Analysis, Neural Networks, Artifact Removal, sEMG,
EEG, Biomedical Signals.

Introduction

The Independent Component Analysis (ICA) is a computational statistical
method able to reveal hidden factors (features) that underlie sets of random
variables, measurements, or signals [Hyv-arinen et al, 2001]. ICA builds a
generative model for the measured multivariate data, in which the data are as-
sumed to be linear or nonlinear mixtures of some unknown hidden variables
(sources); the mixing system is also unknown. In order to overcome the un-
derdetermination of the algorithm we assume that the hidden sources have the
properties of nongaussianity and statistical independence. These sources are
named independent components (ICs).

© 2005 Springer. Printed in the Netherlands. 

313

B. Apolloni et al. (eds.), Biological and Artificial Intelligence Environments, 313–320 

Universita degli Studi di Messina, Salita Sperone, 31 C.P. 57, 98166 Messina, Italy ` 

a ` 

ä

2 1,



314

The ICA was demonstrated to be a powerful tool in biomedical signal process-
ing [Jung, Humphries et al, 2000], [Jung, Makeig et al, 2000], [Jung et al,
1998], [Azzerboni et al, 2003], [Friston et al, 2000], [Tey and Puthusserypady,
2003]: some kinds of brain imaging data and muscle activity representations
seem to be quite well described by the ICA model. In particular, the ICA lin-
ear models work well with electroencephalography (EEG) [Jung, Humphries
et al, 2000], [Jung, Makeig et al, 2000], [Jung et al, 1998] and electromyog-
raphy (EMG) [Azzerboni et al, 2003], which are recordings of electric fields
of signal emerging from neural currents within the brain and from motor po-
tentials within the muscles motor units. Also the ICA nonlinear models have
been applied with success in order to process biomedical signals; in fact , after
that Friston [Friston et al, 2000] showed that functional Magnetic Resonance
Images (fMRI) are nonlinear mixing of some independent source, Puthussery-
pady [Tey and Puthusserypady, 2003] investigated successfully an application
of post-nonlinear ICA to fMRI.
In this paper we present an overview of the most popular ICA algorithms and
we discuss some applications in biomedical signal processing.

1. An Overview of the ICA Algorithms

ICA is a method for solving the blind source separation (BSS) problem
whose aim is to recover the independent source signals from some measured
mixtures [Hyv rinen et al, 2001]. Using the vector matrix notation, the mixing
model is written as

x = F(s) (1)

where x is the observed data vector, F(·) is the nonlinear mixing function and s
is an unknown source vector containing the source signals, which are assumed
to be statistically independent. Thus, the ICA resolves the BSS problem under
the hypothesis that the source are mutually independent. In the following, we
discuss some well known algorithms that solve the ICA problem under the
assumptions of linear or nonlinear mixture models.

The general nonlinear mixing model (1), in its post-linear mixing form can
be represented as follow:

x = F(As) (2)

Here the sources are first linear mixed and then the non linear operator F is
applied. Post-nonlinear model has been introduced by Taleb and Jutten [Taleb
and Jutten, 1999] and various studies proposed some approaches to solve (2).
The nonlinear issue was less studied than the post-nonlinear one: a very used
algorithm about nonlinear ICA is MISEP [Almeida, 2003], that is based on
the minimization of the mutual information of the estimated components as a
generalization of the most popular INFOMAX algorithm [Bell and Sejnowski,
1995], [Lee et al, 1999]. A serious problem is that the solution of (1), although
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it always exists, it is not unique (see ref. [Hyv rinen et al, 2001], pp. 315-319).
Another problem is that nonlinear methods are computationally demanding. In
the applications we often like better to assume a post-nonlinear model and then
to solve (2) because it is an adequate modelling of real world physical systems,
since data recording sensors can have a nonlinear characteristics. But, if the
mixing process is intrinsically nonlinear, this model is not suitable. Under the
assumption of the linear mixture model, the (1) becomes:

x = As (3)

where A is the unknown mixing matrix. In this case, we have to estimate a
matrix W such that

u = Wx (4)

where u are the estimated ICs. In the last years many algorithms was imple-
mented in order to solve (4). Bell and Sejnowski implemented an algorithm
based on the INFOMAX principle [Bell and Sejnowski, 1995], [Lee et al,
1999] whose aim is to maximize the output entropy, of information flow, of
a neural network with nonlinear outputs, as shown in fig. 1.

Figure 1. Neural Network architectures for INFOMAX algorithm.

Subsequently, Hyvarinen and Oja proposed a fast fixed point algorithm (Fast
ICA) estimating the nongaussianity by the kurtosis (see ref. [Hyv-arinen et al,
2001], pp. 178-179) or by the negentropy (see ref. [Bell and Sejnowski, 1995],
pp. 188-196). They work on the basis that the ICs can be found by finding
directions in which the data is maximally nongaussian. Fortunately, in many
practical applications the assumption of linear mixture model is reasonable,

ä



316

and we can apply linear ICA algorithms with good results; for this reason, we
put our attention on the solution of the linear mixture model. In particular
we base the processing on the extended-INFOMAX[Lee et al, 1999]. The
choice of this algorithm is based on its simplicity and its ability to separate
sources with sub- an super-gaussian distributions. The kurtosis estimate is the
switching criterion in the learning rule,

ΔW ∝ [I−Ktanh(u)uT − uuT ]W (5)

were K is the diagonal matrix, whose elements are ki = sign(kurt(ui)).
In the next section we discuss some ICA applications for biomedical signals,
like EEG and EMG ones.

2. Biomedical Signal Processing by ICA

The biomedical area is a very promising field of application for ICA. So far
ICA has been applied to EEG, Magnetoencephalograms (MEG), fMRI , Elec-
trocardiograms (ECG) and surface Electromyographic (sEMG) signal process-
ing [Jung, Humphries et al, 2000], [Jung Makeig et al, 2000], [Jung et al,
1998], [Azzerboni et al, 2003], [Friston et al, 2000], [Tey and Puthusserypady,
2003]. The ICA technique allows to extract important features from the data.
Here we focus on ICA as a tool for analyzing electric activity in the brain and in
the muscles. In particular we analyze a key topic in biomedical signal process-
ing: the artifacts identification and cancellation [Jung, Humphries et al, 2000],
[Jung, Makeig et al, 2000], [Jung et al, 1998 ], [Azzerboni et al, 2003]. In fact,
if the biomedical signal recordings are strongly corrupted by the artifacts, it
is impossible to analyze exactly the data and often some clinical information
cannot be obtained. For these reasons a processing phase is required in order
to remove artifacts. Here we show as the ICA can be used in this issue.

Artifacts Identification in EEG Signals

Artifacts in EEG are signals not generated by brain activity, but by some
disturbance such as muscle activity. These signals are quite independent from
those related to brain activity, so ICA is a candidate for artifacts rejection. ICA
has been successfully applied to EEG for artifacts removal also in an auto-
matic way [Delorme et al, 2001]. Consider 19 channels EEG recordings, 200
Hz sampling rate, as shown in fig. 2a; in this case the assumption of linear mix-
ture model is reasonable, because we can say that every channel record a linear
combination of independent sources. The application of ICA algorithm allows
to obtain the ICs (see fig. 2b). In order to identify the artifact components, we
use markers that are related to the signal’s distributions. In particular we com-
pute two markers for every component: the kurtosis, that is highly positive for
‘peaked’ activity distributions, typical of artifacts, and the entropy (low values
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of entropy are typical of artifacts) [Barbati et al, 2004]. Here, the distributions
of the local entropy and of the local kurtosis were normalized to 0-mean and 1-
standard deviation with respect to all ICs for each segment; the thresholds were
set at 1.64 and, if a significant percentage (set at 20%) of segments exceeded
rejection threshold, the corresponding IC was marked for rejection. The ICs
with the local higher kurtosis were IC5, IC16, IC17, and IC19, whereas the
ICs with the local lower entropy were IC5, IC14, IC17 and IC19. Thus, we
can say that IC5, IC17 and IC19 are certainly artifacts components.

Artifacts Cancellation in Surface EMG

Let consider two active electrodes that perform a sEMG. The electrodes
were put on the pectoral muscles of a healthy co-operating human subject. In
particular the first electrodes was put on the left pectoral muscle and the second
one on the thorax so that the cardiac activity is recorded (see fig. 3a). It is easy
to see that first row of sEMG is corrupted by cardiac activity. The fig. 3b shows
the ICs: the cardiac activity is represented by the first IC. Thus, we can remove
artifact and we can reconstruct the sEMG, (see fig. 3c). The reconstruction
step is based on (3), in fact we compute the mixing matrix A, by the inverse
(or pseudo-inverse) of W, and we set to zero the column related to the compo-
nent that we want remove. Thus we calculate the new data set x that represents
the reconstructed signals after artifacts cancellation. Finally, we evaluate the
removal artifact goodness by a comparison, in time- and frequency-domain,
between the original first channel (ch 1) and the reconstructed one. The fig. 3d
confirms the good reconstruction in the time-domain (the liner regression co-
efficient is equal to 0.987). The Power Spectrum Density (PSD) of the original
(dotted line) and the reconstruction signal (continuous line) are shown in fig.
3e. Note that the PSD of reconstructed ch 1 is simply scaled and the frequency
range, in which the artifact was localized, is strongly attenuated.

3. Conclusions

In this paper we presented an overview of the ICA algorithms and their
applicability to biomedical signal processing. We have discussed the linear and
nonlinear mixture models and various algorithms in order to solve them. We
have also underlined that nonlinear methods are computationally demanding:
for this reason we like better, if it is possible, to approximate the problem
under the assumption of the linear mixture model. We have also shown how
the application of linear ICA allows the artifacts identification and cancellation
in EEG and sEMG data with good results.
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Figure 2. Artifact identification in EEG signals by ICA. (a) The EEG recordings of 19 active
electrodes. (b) ICs computed by means of an algorithm based on extended infomax: the kurtosis
analysis allows to identify the ICs (1, 5, 16, 19) related to the artifacts.
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Figure 3. Artifact removal in sEMG by ICA. (a) The recordings of two active electrodes
that perform a sEMG. (b) ICs computed by means of an algorithm based on extended infomax:
the cardiac activity is represented by the first IC. (c) The Reconstructed sEMG after artifact
removal. (d) Comparison on the time-domain between the original ch 1 and reconstructed one:
the linear regression coefficient is equal to 0.987. (e) The Power Spectrum Density (PSD) of
the original (dotted line) and reconstructed signal (continuous line): the PSD of reconstructed
ch 1 is simply scaled and the frequency range, in which was localized the artifact, is strongly
attenuated.
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Abstract Research on human sensorimotor functions has hugely increased after elec-
tromyogram (EMG) analysis was replaced by functional magnetic resonance
imaging (fMRI), that allows to obtain a direct visualization of the brain areas
involved in motor control. Very meaningful results could be obtained if the
two analysis could be correlated. Our goal is to acquire the EMG data during
an fMRI task. The main problems in doing this are related to the electromag-
netic compatibility between the resonance coils (very high magnetic fields) and
the EMG electrodes. In this study we developed a system that can characterize
the entire EMG signal corrupted by the magnetic fields generated by the mag-
netic resonance gradients. The entire system consists in a hardware equipment
(shielded cables and wires) and a software analysis (effective mean analysis and
wavelet analysis). The results show that a motor task was correctly delivered by
our post processing analysis of the signal.

Keywords: SEMG, FMRI, Time-frequency analysis, Wavelet transform.

Introduction

In the last years functional magnetic resonance imaging (fMRI) has become
a very useful method to examine brain activations during motor tasks. To un-
derstand the relationship between muscle output and fMRI signals from var-
ious cortical fields, EMG information from the muscle is needed. The EMG
information can act as a feedback to confirm the fMRI results. Various stud-
ies have attempted to measure force during fMRI acquisitions [Dettmers et al,
1996], [Ludman et al, 1996], [Thickbroom et al, 1998], [Ehrsson et al, 1993],
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while other studies were able to record EMG signals in a MRI room during
a fMRI task [Liu et al, 2000], [Liu et al, 2002]. These studies reveal that
EMG data collected during MRI sequence operation are not readable because
of high-voltage noise associated with the sequence. However, they analyze
the EMG signals within each gap between two blocks of images, showing that
the EMG in a 100-ms window gap reflects the level of muscle activation for
the entire contraction. The aim of this paper is to characterize muscle activity
through the entire EMG channel, even if it is corrupted by fMRI image scans.

1. System description

The main problems in a joint fMRI-EMG measure are that the EMG signal
can interfere with signals from the MRI and that MRI acquisitions can gen-
erate unwanted signals that hide the muscle activities in the EMG channels.
The measurement system consists of an MRI system with fMRI capability; an
EMG measuring system with adeguately shielded cables; a data acquisition
board and a control computer. To avoid as much electromagnetic interference
as possible, the preamplifiers and the acquisition tools for the EMG signals
are placed outside the resonance room. The MRI system requires a highly
homogeneous magnetic field that could be corrupted by the EMG amplifiers.
A shielded cable bringing all the EMG electrode signals is passed through a
narrow cavity between the resonance room door and the floor. Ten healthy vol-
unteers were recruited. All were right-handed and none had contraindications
to fMRI or previous history of any neurological or psychiatric disorders. All
gave written informed consent. The task under study is a Abductor Brevis Pol-
licis (ABP) contraction. The simple task that volunteers repeatedly performed
during the active phase consisted in finger pinches of the right hand.

MRI system

The MRI system used was a 1.5-T Siemens Vision scanner. In order to test
the data acquisition system we collected two types of resonance images: the
T1-weighted image that shows the anatomical structure of the skull, and func-
tional images that are able to deliver the Blood Oxygenation Level Dependent
(BOLD) signal, related to brain activity. The fMRI analysis measures the con-
trast differences of brain imaging during active and rest periods. The fMRI
signal is related to some changes in the neural activity of the brain. Some in-
creases in local neural activity cause local increases of blood flow with changes
in the diamagnetic Oxyhemoglobin (HBO2) and the weakly paramagnetic de-
oxyhemoglobin concentrations. Functional brain images were acquired with
an ascending multislice gradient Echo Planar Imaging (EPI) pulse sequence.
The Field Of View (FOV) for the brain images was 256 x 256 mm, and the
matrix size was 64 x 128 mm (interpolated to 128 x 128 mm): thus the pixel
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size was 2 x 2 mm. The flip angle was 90. Sixteen transverse slices (3 mm slice
thickness) were selected for both functional and T1-weighted brain images in
the same positions. The distance factor between two adjacent slices was 0.25
mm, making a voxel size of 2 x 2 x 3 mm. The duration of each 16-slice scan
that covers the interested brain section was 3 s. In our study, we performed 46
entire brain scans. The initial four scans was discarded (to ensure the stabiliza-
tion of the magnetic field of the resonance tool) and the other 42 consisted in
six 7-scan alternating sessions (rest and active).

EMG measurement system

This system was used to record signals from seven electrodes: four of
these recorded EMG activity from the muscles ABP and Flexor Carpi Radi-
alis (FCR), while two electrodes recorded an electrocardiogram (ECG) signal
and the last one was used as reference. All the electrode wires were placed in
a shielded cable that was passed through a small gap between the floor and the
MRI room door. Outside the MRI room the electrode wires were connected
to the differential EMG amplifiers whose dynamic amplitude ranged between
−800μV and +800μV . After the pre-filters (high-pass at 0.33 Hz and low-
pass at 100 Hz) the EMG signals are digitalized (12 bit) at the sampling fre-
quency of 256 Hz. The output was connected to the data acquisition software
stored in a laptop computer and the EMG data were stored on the hard disk of
the laptop computer.

2. System evaluation

The EMG signals recorded during the fMRI scans are shown in Figure 1.
The muscle activity is hidden by the very high fMRI signals and needs a post-
processing analysis in order to characterize them. In the next subsection we
show the methods used to analyze the EMG signal, whereas in the last sub-
section we present the results related to the fMRI analysis. All the software
processing, both for the EMG and for the fMRI was performed with MATLAB
language, by the Mathworks, Inc. The functional analysis was performed by
means of the Statistical Parameter Mapping (SPM) toolbox that works on Mat-
lab.

EMG data evaluation

In order to deliver the EMG information buried in this signal we performed
a long-time analysis that reflects the functional MRI elaboration. We wanted
to find out the differences in signal between the rest scans and the active ones.
Other studies carried out in the same way were not able to reveal the EMG
within the EPI scans. Here we show that the muscle activity is buried in the
acquired signal and there is a method to extract it, based on a effective mean
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Figure 1. EMG recordings. The first channel records the ABP activity. The second channel
records the FCR activity. The third channel records an ECG activity.

Figure 2. The rectified first channel recording (in background) and the effective mean com-
puted for each fMRI scan (on the left) and for each 7-scan session (in the right). The dash-dotted
lines show the mean value of the effective mean computed over the entire time axis. The effec-
tive mean trend suggests the discordance between the active time and the rest time range. The
muscle is in its activity time when the effective mean overcomes the computed mean value. In
the figure the effective mean was amplified by a fixed constant in order to give a better figure
visualization.

analysis or on a more sophisticated wavelet analysis. In the next two subsec-
tions we present two approaches used in order to reveal the muscle activity.

Effective Mean Analysis. The idea is to create a mean analysis between all
the scans belonging to a single session (seven scans), and to assess if there is
a meaningful discrepancy between two adjacent sessions (one characterizing
the rest time and the other representing the muscle activity). But the recorded
signals are practically zero-mean signals and most part of them is distributed
around the zero value, making the mean analysis inefficient. For these reasons
we introduced signal rectification (absolute value), before performing a mean
analysis, calculating an effective mean. In the first step, the effective mean
value was calculated for each scan (16 slices), whereas a further computation

324



was carried out applying the effective mean analysis for each session (7 scans
of 16 slices each), either when the muscle is at rest, or when it is in its activation
time range. The results are shown in figure 2. We can observe that in the EMG
channel measuring the ABP activity, there is a very meaningful difference in
the effective mean analysis, between the two different kind of sessions (active
and rest). In order to authenticate the analysis method, the same study was
performed in the others two channels, that recorded the FCR activity and the
ECG. As we expected, the same analysis did not reveal a meaningful discor-
dance between the different sessions: in fact, there was no rational motivation
that could cause a different signal in a muscle that is not involved in an activity,
or in the ECG, that reflect the regular cardiac activity during a motor task. The
results are shown in figure 3.

Figure 3. The rectified second channel (left) and third channel (right) recordings (in back-
ground) and the effective mean analysis computed for each 7-scan session (solid line). The
dash-dotted line shows the mean value of the effective mean computed over the entire time axis.
The effective mean trend for each session doesn’t reveals any discordance between the active
time and the rest time range. In fact, the second channel recorded a muscle activity that was at
rest during the entire fMRI task (the FCR), whereas the third channel recorded an ECG activity
that obviously was almost constant during the entire fMRI task. In the figure the effective mean
was amplified by a fixed constant in order to give a better figure visualization.

Wavelet Analysis. The same analysis was performed by means of the
wavelet algorithm. The wavelet analysis is a signal processing tool that is able
to extract the time-variant frequency content of a signal. The wavelet analysis
can be viewed as a time-variant Fourier Transform, but it has the advantage
of a multiresolution approach, that is, it examine the lower spectral compo-
nents in a larger time lapse, whereas the highest frequencies in the signal are
analyzed in narrower temporal time lapses. In [Azzerboni et al, 2003] the au-
thors used a wavelet analysis in order to estimate the applied force in a EMG
signal acquired during a dynamic contraction. An analogous analysis can be
applied to the EMG signal corrupted by the fMRI magnetic field. Like in the
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previous analysis, making the signal rectification (absolute value) before per-
forming the wavelet analysis allows to identify the muscle activity buried in the
signal. Figure 4 (left) shows the wavelet analysis performed on the first EMG
channel that represents the ABP activity. The wavelet analysis was performed
using the fourth Daubechies wavelet mother at the ninth level. First we extract
an approximate signal by wavelet analysis, then we compute the mean value
of this last signal. If we compare the wavelet approximation signal with its
mean value, we can notice that the signal overcome the mean value exactly on
the time ranges of when the muscle was active. Furthermore, the amplitude of
the approximation wavelet signal can be related to the force applied in muscle
contraction. The same analysis was performed in the other two channels, that
recorded the FCR activity and the ECG. Again, as expected, this algorithm
does not reveal a meaningful discordance between the different sessions, and
the wavelet approximation kept the same trend almost everywhere. The results
are shown in figure 4 (center and right) .

Figure 4. The rectified channel recordings (in background) and the wavelet analysis computed
by the fourth Daubechies mother wavelet (solid line). The dash-dotted lines show the mean
value of the wavelet signal computed over the entire time axis. (on the left) The wavelet trend,
compared with its mean value, suggest the discordance between the active time and the rest
time range. The muscle is in its activity time when the wavelet overcomes the computed mean
value. Furthermore, the wavelet provides a information that is more accurately related to the
applied force in the muscle activity, and thus it more accurately reflects a pure EMG signal. (on
the center and the right) The wavelet trend, compared with its mean value, doesn’t reveals any
discordance between the active time and the rest time range. The FCR and the cardiac activity
are not involved in the motor task. In the figure the wavelet was amplified by a fixed constant in
order to give a better figure visualization.

fMRI data evaluation

In this subsection we show the results of the fMRI processing when the
images are acquired in conjunction with the EMG acquisition. The results
show that the presence of the EMG acquisition system does not influence the

326



fMRI analysis. In fact, there is no difference between the obtained results and
an analogous fMRI measure collected without the EMG acquisition system.
Figure 5 shows on the left the translation and rotation correction at the data, in
order to eliminate the motion artifacts from the fMRI data, and on the right the
obtained brain activity after the application of a fMRI processing. The results
are in agreement with the physiological knowledge about the motor control,
showing that the EMG acquisition tool does not influence fMRI measurements.
The activation zone is the left cerebrum frontal lobe (Brodmann area 6).

Figure 5. (on the left) The translation and rotation corrections needed to remove the head
motion artifacts in fMRI data. (on the right) The brain activity revealed by the fMRI processing.
The activation zone is the left cerebrum frontal lobe (Brodmann area 6).

3. Conclusions and discussion

In this paper we presented a tool that reveals the muscle activity in an EMG
signal acquired during an fMRI task. The EMG signal was hardly corrupted
by the huge magnetic fields generated by the magnetic resonance devices. Us-
ing adequate electrodes, wires and shielded cables, we were able to acquire
an EMG signal that contained some information about the muscle activity (the
amplifiers did not saturate). By means of two post-processing software tools
we were able to extract these informations. The software analysis was per-
formed in two step. An effective mean analysis revealed the main differences
between the rest time and the activation time. A wavelet analysis allowed
to asses the signal hidden in the EMG in depth, providing a force-dependent
wavelet approximation signal. In order to reflect muscle activity both soft-
ware analysis were performed on the rectified signal, since the original signal
had a probability density function hardly centered around the zero value. Fur-
thermore, the results from the fMRI processing show that the presence of the
suitable EMG acquisition tool does not corrupt the resonance measure. The
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results are in agreement with the physiological knowledge. This study is the
first step in order to create a joint EMG-fMRI study that could better reveal the
relationship between a muscle task and the related brain activity.
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Abstract: Automatic object positioning in 3D space is nowadays required by a great 
variety of applications. We propose here a new approach to this problem, 
whose core is constituted by a bank of neural networks; from the measured 
positions of a set of laser spots generated on the object surface, the nets 
estimate the position of a set of points rigidly connected to the object. Results 
on synthetic data are reported, and show that the proposed method is reliable 
and comparable in accuracy with the most common solutions present in the 
literature, which are based on Iterative Closest Point (ICP) matching. 

Keywords: Object positioning, 3D space, neural bank. 

1.  Introduction 

Automatic positioning of objects to a particular reference position and 
orientation in 3D space is a task, whose importance is growing more and 
more inside the industrial, scientific and medical communities. For instance, 
a precise work-piece positioning is fundamental in many industrial automatic
processes, [Hager, 1997]; the pose is a critical parameter for many facial 
recognition algorithms, [Yang et al., 2002]; in radiotherapy, the efficacy of 

329

B. Apolloni et al. (eds.), Biological and Artificial Intelligence Environments, 329–335 
© 2005 Springer. Printed in the Netherlands. 



330

the treatment depends critically on the accuracy in the position and 
orientation of the patient with respect to the gantry, [Baroni et al., 2003], 
[Wang et al., 2001].

One of the most used solutions is to resort to a vision system, which 
monitors the object, and may control its motion towards the reference 
position. Positioning is then based on the identification of a set of points on 
the object’s surface, called point features. The rototranslation [R,T], which 
brings the object from a generic location (Obj) to the reference one (ObjR),
can be computed if three or more pairs of features have been localized on 
both ObjR and Obj. Point features recognition on the image stream is 
simplified when the features are adequately marked; this approach is 
followed by many of the existing methods, to guarantee reasonably reliable 
results. However, use of markers is not allowed in many applications; 
moreover, incorrect features marking may affect badly object positioning; 
this was shown to be particularly critical in patient positioning in 
radiotherapy, [Baroni et al., 2003].

An alternative solution is to provide the 3D coordinates of some points 
belonging to Obj by means of laser beams projected onto Obj; however, this 
data cannot be treated as features, since each laser spot is not rigidly 
connected with Obj. The solution is to define Obj and ObjR as manifolds (for 
instance 3D meshes), and to cast the problem as non linear optimization: the 
search for the rototranslation [R,T], that transforms ObjR to Obj. To the 
scope, iterative solutions, such as the Iterative Closest Point (ICP) 
algorithm, [Besl et al., 1992], have been developed. However, their iterative 
nature badly affects the processing time, which becomes significant when 
the point clouds representing the two manifolds are composed by a great 
number of elements. 

We present here an alternative solution, based on considering few points, 
generated as the intersection of Obj with a set of laser beams. From the 3D 
position of these spots, a neural system is used to estimate [R,T] for a wide 
range of positions and orientations of Obj. Results on simulations and 
comparison with ICP are reported and discussed. These show that the 
proposed method is very reliable, and that it is comparable in accuracy with 
ICP.

2. Methodology 

The system is constituted of two components (fig. 1). The acquisition sub-
system is composed of a set of N laser projectors which project laser spots 
onto Obj. Spots are automatically detected by a set of cameras and their 3D 
positions, {Sj}, are passed to the second stage. This is constituted of M Multi-
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layer perceptrons (MLP) networks, plus a non linear least squares system 
solver. Each net receives as input the coordinates of the laser spots, and 
gives as output the estimated position of a virtual point feature attached to 
Obj. The net output is then processed to estimate the rototranslation [R,T]
from ObjR to Obj.

To train the networks, it is necessary to simulate the rototranslation of 
the object and to compute the intersection between Obj and the laser beams. 
Therefore both a model Obj0 and the 3D position and orientation of each 
laser beam are required. Obj0 may be obtained by CAD or similar software, 
when mechanical pieces have to be positioned, or through 3D scanning, as 
in [Borghese et al., 1998]; in radiotherapy, CT data are often used to extract 
the patient surface, [Baroni et al., 2003]. For simplicity, and without loss of 
generality, we consider here Obj0 equal to ObjR. The beam parameters are 
obtained during a preliminary calibration phase, when 3D spots can be 
generated simply putting a reflecting object along the beam trajectories; 
from the ensemble of 3D spots, the orientation and position of each beam 
can be estimated.

Once the setup session has been completed and ObjR is available, the 
dataset for net’s training is created. First of all, a set of M reference virtual 
point features, VFR

1, …, VFR
M is provided by the user; a virtual point 

feature is defined as a 3D point, which is rigidly connected to the digital 
object model; the user can freely choose any point of the 3D space to be a 
virtual point feature. When the object is rototranslated in 3D space by a 
transformation [R,T], the displacement of each virtual point feature is 
described by the same matrix, [R,T]; in this case, the jth virtual point feature 
will be referred to simply as VFj. The input and desired output vectors of the 
nets for the training session are obtained by the following procedure: ObjR is 
repeatedly moved in the 3D space, by a series of D random rototranslation 
matrixes [R1,T1], …, [RD,TD]; for each rototranslation, the 3D position of the 
laser spots S1, …, SN, is computed as the intersection between the laser 
beams and Obj; these points constitute the input vector for training the nets. 
The desired output vector for the jth net (that is, the jth virtual point feature 
VFj) is then obtained applying [R1,T1], …, [RD,TD], to the jth reference 
virtual feature, VFR

j. Networks are finally trained by means of the 
Levenberg-Marquardt learning algorithm, [Hagan et al., 1994]. 

Net training is generally the most time consuming step of the method. 
However, once the MLPs have been prepared, the position of Obj can be 
estimated in real-time from the N laser spots: since the virtual point features 
are rigidly connected to Obj, the rototranslation matrix [R,T], which brings 
ObjR to Obj, can be estimated through a non linear least squares system, 
where the unknowns are the six rototranslation parameters (three for 
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translation and three for rotation). The objective function to be minimized is 
the following residual error E:

M

j

RE
1

jj VFVFTR,
(1),

where <VFj> is the output of the jth net. Once <[R,T]> has been 
computed, it can be send to the engine in charge of bringing the object in the 
reference 3D position.

Figure 1. The upper part of the figure describes the acquisition sub-system: N laser spots are 
projected onto the objects’ surface; they are detected by a dedicated vision system, which 
reconstructs their 3D positions. In the lower part, the procedure, which recovers <[R,T]>
from the laser spots, is depicted: first, the 3D positions of the virtual point features, rigidly 
connected with Obj, is computed through a set of MLP networks, each associated to one 
feature. From the reference positions of the features and the estimated ones, <[R,T]> can be 
computed.
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3.   Results 

We tested our algorithm on synthetic data, and compared it with ICP, 
[Besl et al., 1992], which is one of the most used algorithms for surface 
matching. The adopted object, ObjR, is represented in fig. 2. Sixteen laser 
spots S1, …, S16 are generated by the intersection of sixteen approximately 
vertical laser beams with the object surface; eleven virtual features are 
distributed in the 3D space as in fig. 2. 

Each MLP is composed by a first layer of nine sigmoidal neurons and an 
output layer of three linear neurons. The small size of the MLPs avoids the 
risk of overfitting during the training session. The training dataset was 
obtained from 1000 rototranslations of ObjR, where the rototranslation 
parameters were uniformly spread between ±20 mm for the three 
translations, ±18° for the three rotations. A testing dataset composed by 100 
rototranslation was generated in the same way. To evaluate quantitatively 
the performance of the neural algorithm, the difference of the reference 
position and the one obtained by applying the transformation <[R,T]> to 
Obj, was computed for all the vertexes of the model. The same was done for 
ICP. Since we observed that our algorithm works better when initial 
displacement is small, we decided to iteratively apply it to Obj; in this case 
residual error was further decreased, as demonstrated in table 1, where 
percentiles for the different methods are reported. 

4. Discussion and conclusion 

The core of the proposed algorithm is a bank of MLPs, which are used to 
estimate the position of M virtual point features rigidly connected to Obj.

Thanks to the adoption of the neural bank, marking of features onto the 
object is not necessary. This constitutes a great advantage with regards to 
traditional techniques, since in many applications object features cannot be 
(reliably) markered. Smart positioning of the virtual point features is helpful 
to guarantee the residual error to be minimal in a certain zones of Obj: for 
example, features dislocated on a spherical surface (fig. 2) allow 
repositioning the central point of the sphere at best. Moreover, increasing 
the number of virtual point features, the algorithm performance does 
improve.

Although the proposed algorithm reaches the maximum accuracy when 
Obj is close to ObjR, this is not a strict condition to be satisfied; when Obj
can be iteratively repositioned, the proposed algorithm can be sequentially 
applied to Obj, to obtain minimal residual errors (table 1); the same cannot 
be said for ICP, which may converge to bad local minima when Obj is too 
far from ObjR.
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Figure 1. The virtual object used for testing, in reference conditions (ObjR); it is composed by 
the sum of two normalized gaussian distributions, with means μ1=[-50,50], μ2=[65,-35],
standard deviations 1=45, 2=35, multiplied respectively by 7000 and 4000; sampling of 
ObjR was performed each 10 mm along the x and y axis. The 11 reference virtual point 
features are plotted as big spheres (7 of them are totally or partially visible); the 16 laser 
beams are roughly distributed along the vertical direction. 

Table 1. The 25th, 50th and 75th percentile residual errors computed for all the points of the 
object, for 100 random positioning, are shown: before any correction, after correction with 
ICP, after correction with the proposed algorithm and after iterative correction with the 
proposed algorithm. 

 25th 50th 75th

Initial displacement 24.24 mm 27.75 mm 30.69 mm 
ICP 4.38 mm 5.08 mm 5.94 mm 
Proposed algorithm 2.67 mm 3.07 mm 3.51 mm 
Proposed algorithm (2nd iteration) 1.04 mm 1.41 mm 2.07 mm 

On the test data, our algorithm shows accuracy higher than ICP; this is 
partially due to the large sampling of ObjR; in fact increasing the model 
resolution, the accuracy of ICP increases until it reaches the one of the 
proposed method. However, also the processing time of ICP increases. 

Noise can be added into the training dataset to simulate real conditions. 
The behavior of the neural system is still robust in this case as far as the 
number of neurons is increased.

The only critical aspect of the proposed method is the laser beams 
configuration: it has to be carefully chosen, to guarantee that each the laser 
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spot on Obj can be seen by the cameras, and that each {Sj} effectively 
contains information about the position and orientation of Obj.

In conclusion, we have proposed a new reliable algorithm for rigid object 
positioning in 3D space. It is faster with respects to traditional methods and 
it permits to deal with higher initial misplacements. Moreover, feature 
marking is not necessary for obtaining reliable results. Extension of the 
method to deformable object is currently under investigation as well as the 
relationship between the position of the feature points, and the manifold 
local parameters. 

References 

Baroni, G., Troia, A., Riboldi, M., Orecchia, R., Ferrigno, G., Pedotti, A. (2003) Evaluation 
of methods for opto-electronic body surface sensing applied to patient position control in 
breast radiation therapy. Med. Biol. Eng. Comput., 41, pp. 679-688. 

Besl, P. J., McKay, N. D. (1992) A method for registration of 3-d shapes. IEEE Trans. 
Pattern Analysis and Machine Intelligence, 14, pp. 239-256. 

Borghese N.A., Ferrigno G., Baroni G., Savarè R., Ferrari S. and Pedotti A. (1998) 
AUTOSCAN: A flexible and portable scanner of 3D surfaces. IEEE Computer Graphics & 
Applications, pp. 38-41. 

De Momi E., Frosio I., Baroni G. and Ferrigno G. (2003) FNNVM, a new fast 
neurocomputational approach to surfaces alignment in image guided knee replacement.
Procedings of CAOS 2003, Marbella, Spain. 

Hagan, M. T., Menhaj, M. (1994) Training feedforward networks with the Marquardt 
algorithm. IEEE Trans. Neural Networks, 5, pp. 989-993. 

Hager, G. D. (1997) A modular system for robust positioning using feedback from stereo 
vision. IEEE Trans. On Robotics and Automation, 13, pp. 582-595. 

Wang, L. A., Solberg, T. D., Medin P. M. and Boone R. (2001) Infrared patient positioning 
for stereotactic radiosurgery of extracranial tumors. Computer in Biology and Medicine, 
31, pp. 101-111. 

Yang, M. H., Kriegman, D. J., Ahuja, N. (2002) Detecting faces in images: a survey. IEEE 
Trans. on Pattern Analysis and Machine Intell., 24, pp. 34-58. 



HUMAN VISUAL SYSTEM MODELLING FOR 
REAL-TIME SALT AND PEPPER NOISE 
REMOVAL

I. Frosio and N. A. Borghese 
Laboratory of Human Motion Analysis and Virtual Reality, MAVR, Department of Computer
Science, University of Milano, Via Comelico 39 - 20135 Milano, Italy –
http:://mavr.dsi.unimi.it.

Abstract: Pixel failures often introduce in digital images a characteristic impulsive noise, 
known as “salt & pepper”. This has to be corrected to get clear digital images. 
In this paper a new approach to the problem, based on an adequate model of 
the sensor and on the properties of the Human Visual System, is introduced. 
The local background luminance is estimated through a 3x3 median filter, and 
noise standard deviation from the sensor model. Since the filter is based only 
on local operations, it can work at real-time rates (less than 0.7s for 12 bit, 
4.8MPixel images). Its speed may be even improved by using DSP 
implementation.

Keywords: Salt & pepper noise, switching median filter, human visual system. 

1. Introduction 

     Pixel failures in both sensors and readout hardware often produce 
degradation in digital images, in the form of bright or dark pixels uniformly 
spread on the entire image. This kind of noise, known as “salt and pepper”, 
becomes even more evident when the image is treated with filters, which 
enhance high frequency structures, like contours or lines, [Webb, 1998].

    A host of techniques have been developed to eliminate this noise, but 
few of them are able to reliably operate in real-time on images, which are 
nowadays of the order of 4÷5 Mpixels. This problem is particularly critical 
in medical imaging where quantitative measurement and illness diagnoses 
have to be carried out on them, and large displays are used for optimal 
visualization.
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    The most promising approach is based on a median switching schema: 
all the pulses are first identified; then the corrupted pixel values are 
substituted by the median of their neighbours, [Wang et al., 1999], [Zhang et 
al., 2002]. Pulse detection is the critical element of the filter. Several 
iterative algorithms, based on switching filters, have been proposed to the 
scope based mainly on theory of error-correcting code, [Boukerrou et al., 
1998], or progressive filtering, [Badulescu et al., 2000]. However, these 
solutions are not suitable for real-time implementation for large images. 

     Procedures, which avoid iterative solutions, have also been developed, 
[Wang et al., 1999], [Rioul, 1996]. However, they fail when high gradients 
or edges are present in the image. It is shown here how taking explicitly into 
account the characteristics of the Human Visual System (HVS) and by 
adopting an adequate model of the sensor, a reliable real-time switching 
median filter can be realized. 

2. Method 

    The methodology is based on the analysis of the characteristics of the 
Human Visual System.

2.1 The characteristics of the Human Visual Systems 
and of the sensor 

    The ability to detect an object by the HVS is based on three quantities: 
the object’s luminance, the local background’s luminance and the local 
background’s noise. These three actors are related by experimentally derived 
functions.

    When background luminance b assumes high values, the Just Notable 
Difference (JND) increases linearly with the background luminance, as 
stated by the Weber’s law: 

bCJND T  (1) 

   The JND expresses the minimum difference of luminance ( b) between 
the background (b) and the object (b+ b), which makes it detectable; CT is 
the threshold contrast, where contrast is expressed as:

b
b

C
 (2) 



    A pulse is therefore detected if C>CT. In ideal conditions, CT has been 
set to 1%, [Ji et al., 1994]. The range of local background luminance to 
which this law applies, is called “Weber’s region”, and it is constituted of 
the brightest portion of the image dynamics (Fig. 1a).

    When background luminance decreases, CT remains constant. 
However below a certain value of b, a second factor becomes prominent for 
detecting objects: the background noise. This situation is summarized in the 
Rose’s criterion, which compares b with the local noise standard deviation. 
Rose’s criterion states that an object is visible when: 

bKb  (3) 

where b is the background noise standard deviation. K is known as the 
Rose number and it has been experimentally set to a quantity between two 
and five, [Badulescu et al., 2000]. This criterion can be viewed as a signal to 
noise ratio, where the role of the signal is played by luminance difference, 

b.

Figure 1. a) Rose’s and Weber’s laws as they appear for a digital radiography. In the dark 
region Rose’s law provides a more restricting criterion, the opposite in the lighter region. b) 
Estimated (dots) and modeled (continuous line) noise standard deviation as a function of gray 
level, for a digital radiography. 

The pixel luminance depends on the number of incident photons and on 
the sensor parameters. This transformation can be modeled as: 

ByxpGyxb b ,,  (4) 

where G and B represent the gain and bias of the sensor, and pb(x,y) is the 
number of photons reaching the sensor in position (x,y). G and B can be 
reasonably assumed equal for all the pixels of the same sensors. 

# Gray level

JN
D

Weber’s law Rose’s criterion 

2M
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2.2 Parameters determination  

    To identify the pulses, Eq. (2) and (3) are used; the local contrast, 
C(x,y), and the local Rose number, K(x,y), have to be determined. To the 
scope, we need to determine the background luminance associated to the 
pixel, b(x,y), that is to the surrounding pixels; and the local noise standard 
deviation, b(x,y).

b(x,y) can be determined by computing the median value of the 
surrounding pixels, inside a 3x3 window; b(x,y) requires a more careful 
procedure to obtain a reliable measure. A first estimate of this value can be 
obtained as follows: all the pixels characterized by the same background 
luminance, b, are pooled together and the difference between the measured 
luminance, l(x,y), and b(x,y) is computed: n(x,y) = l(x,y) – b(x,y). The 
standard deviation of n(x,y) can be assumed as the noise standard deviation 
associated to b, that is b. By b as a function of the gray levels (cf. Fig. 1b), 
the need of regularization is evident. To the scope the model of the sensor 
can be used, in fact the following relationship should hold:

BGb b
21  (5) 

    from which the best values of 1/G and B in the least squares sense can 
be computed from the data of Fig. 1b. It follows a reliable estimate of b for 
all the luminance values (continuous line in Fig. 1b). 

    At this point, all the pixels that contemporary satisfy the two 
conditions C(x,y)>CT = 0.02 and K(x,y)>KT = 2, are recognized as pulses 
and their value corrected from l(x,y) to b(x,y), as required by the switching 
median filter schema. 

3. Results and discussion 

    The methodology has been widely applied to panoramic and 
cephalometric radiographies, and it has shown efficient in removing all the 
corrupted pixels from the images; for 12 bit, 4.8 Mpixels radiographies, the 
computing time was of 0.67s; the most time consuming step, the median 
filter, required 0.45s. 

    A critical condition is verified when only a few pixels assume one 
luminance value, and among these there is a corrupted pixel. In this situation 
noise may be over-estimated as shown by the points off the curves in Fig. 
1b. However, given the many points used to estimate the sensor parameters, 
this “outliers” do not produces a meaningful offset of the curve; therefore, 
more sophisticated and computationally intensive methods based on robust 
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estimate and outliers elimination have not be applied. Highly corrupted 
images could be problematic in this respect; however, this case should be 
avoided in modern digital imaging. 

    It should be remarked that the present algorithm is not badly affected 
by the presence of local high gradients or edges, as for instance [Wang et al., 
1999], [Zhang et al., 2002] or [Boukerrou et al., 1998], as can be seen in Fig. 
2. This is due to the global approach in the estimate of b and to the very 
small window, 3x3, used for median filtering, which guarantees that high 
gradients or edges do not affect the pulse detector. Few residual pixels may 
remain visible only in the darkest zones of the radiography, which are 
usually poor of diagnostic information.

Figure 2. A portion of a typical dental panoramic image, of size 1536x2605, on 12 bits (left 
panel). A zoom of the same image, treated with unsharp masking filter (mask 13x13, gain 2) 
is shown in the upper, right panel; the lowest panel demonstrated that our algorithm 
efficiently removes salt & pepper noise: no pulse is visible after the application of unsharp 
masking filter. The percentage of pixels corrected on the entire image is 0.7%. 

4. Conclusion 

    The method presented here, conjugates robustness and simplicity. It 
involves only local operations, with no iterations, making the solution fast. 
The introduction of the properties of the HVS and of the sensor allows 
deriving a robust estimate of the parameters used in the pulse detection 
stage.

Human Visual System Modelling for Real-Time
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Abstract The present work is part of a wider research activity carried on within the Italian
National Project named SIINDA. It shows how physical atmosphere parameters
like temperature, humidity, wind direction, can be indirectly estimated in spe-
cific points of the monument, if one, or more than one, ambient air monitoring
station is present in the neighborhood of the monument itself. We use a connec-
tionist system trained to map the parameters measured by such stations with the
parameters measured by the set of installed sensors. The obtained results look
like very good and we received the approving by cultural heritage experts who
evaluated such a methodology to effective by support monitoring in the field of
the conservation state of monuments.

Keywords: Virtual Sensors, Radial Basis Functions, Cultural Heritage.

Introduction

In the field of the conservation of cultural heritage is very important to have
non invasive tools able to monitor both physical and chemical conditions of
material composing the monuments. In fact, the genesis of the damage is al-
ways the result of the interaction among the materials composing the monu-
ment and the atmosphere around it.

Therefore, we can consider the monument as a system in which the in-
put is represented by physical and chemical parameters characterizing the at-
mosphere, the state of the system is represented by physical and chemical pa-
rameters characterizing the monument and the output is represented by the
observable parameters necessary for the study of the conservation. Of course,
it should be essential to know all the system transfer functions to prevent the
damage manifestation, but such a task is very complex. However, on the base
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of the human expert knowledge, it is a priori possible to define some values of
atmosphere parameters which can become critical for a particular architectonic
structure.

As mentioned above, the state of the monument is dynamic and it changes
according to the atmosphere parameters. Thus, it is very important for our task,
to take in account the period (meaning uninterrupted time) in which the state
of the atmosphere remains critical.

Thus, if we want to monitor a monument, we need to know historical series
of physical and chemical parameters of the atmosphere around it and historical
series of chemical parameters of the composing materials. These series have
to be chronologically coherent. This aim can be reached by installing appro-
priate sensors on the monument and leading several sample campaigns. But,
since the monitoring is a long term process, we ought to maintain for long time
the sensors on the monument and repeat many times the sample campaigns.
Moreover often, such actions are impossible to realize, because they should
be very expensive or particularly invasive and reducing the enjoyment of the
monument.

As regards the measurement of the atmosphere physical parameters like
temperature, humidity and so on, it is possible to indirectly estimate them if
one, or better more than one, ambient air monitoring stations (in the follow-
ing named AAMS) is present in the neighborhood of the monument. In fact,
installing on the monument a set of sensors able to measure such parameters,
a connectionist system can be trained to map the parameters measured by the
AAMS with the parameters measured by the set of installed sensors. In this
way, after an opportune training time, the set of sensors on the monument can
be uninstalled and parameter values they would have measured can be achieved
by using the set of virtual sensors realized by the connectionist system.

The present paper is organized in four parts. At first we sketch out some
considerations about the problem, the study case and the kind of data we are
considering. Then, the following sections describe both the design of the con-
nectionist system aimed to realize a set of virtual sensors and the implemen-
tation with the experimental setup. The last section draws some hypothesis of
future work.

1. The study case and data

The present work is part of a wider research activity carried on within the
Italian National Project named SIINDA [[Appolonia et al., 2000]].

The research, we are referring to in this paper, is focused on a connectionist
system able to realize a set of virtual sensors which are used for non invasive
monitoring of several ambient parameters, in order to prevent damage phenom-
ena on the monument.
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Table 1. Measured parameters around the pillar and exposition for each sensor.

Sensor Number Measured Parameters Exposition

Sensor 1 Air Temperature e Humidity South
Sensor 2 Air Temperature e Humidity West
Sensor 3 Air Temperature e Humidity North
Sensor 4 Air Temperature e Humidity East
Sensor 5 Contact Temperature South
Sensor 6 Contact Temperature West
Sensor 7 Contact Temperature North
Sensor 8 Contact Temperature East

We have chosen the roman theater in Aosta city as study case (see Fig. 1) be-
cause we have at our disposal suitable sets of chronological series concerning
atmosphere parameters measured both by an AAMS located close the theater
and by sensors around the faces of a pillar of the theater. The collection of
the ambient parameters near the theater is obtained by the surveys carried out
from AAMS which is located about at 40 meters from the pillar. This station
measures hourly the ambient temperature and the humidity. The collection of
the ambient parameters around the pillar is obtained by eight sensors installed
on the four faces of it. The collection of the ambient parameters around the
pillar is obtained by eight sensors installed on the four faces of it (see Table 1).

Figure 1. The roman theater in Aosta city.

The collection of the ambient parameters around the pillar is obtained by
twelve sensors installed on the four faces of it.
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Since the pillar’s faces are oriented about in according to the cardinal points,
we have a very interesting study case. In fact, the shadow in the sunny days,
changing its position during the day, has an effect on the sensors causing, for
each survey, considerable gaps of values among the surveys on the four faces.
Of course, this phenomenon is less meaningful when the sky is overcast. More-
over, since the pillar is a part of an arcade, the wind blowing through the arcade
causes a turbulence around it by the Venturi effect. Also this phenomenon in-
fluences the sensors, in particular the temperature sensors.

Although, as above described, we have chosen very critical conditions for
our experimental setup, very good results have been obtained taking advan-
tage of statistical investigation carried out on the data before the design of the
connectionist system.

The analysis of the data shows that:

the gap between the ambient temperature surveys measured by the AAMS
and the temperatures (both ambient and contact) survey obtained by the
sensors grows up within the temperature (see left side of Fig. 2);

the hour of survey has an effect on the gap between the ambient temper-
ature surveys obtained by the AAMS and the temperatures (both ambi-
ent and contact) survey measured by the sensors; such effect grows up
within the temperature (see right side of Fig. 2);

the same two considerations, although less tightening, can be made about
the humidity.

Thus, our problem can be expressed in terms of following equations (1),
where Tai, Tci, Hai, represent, respectively the ambient temperature, the con-
tact temperature and the air humidity in the four points of the pillar. The time
is labeled t, the air temperature measured by the AAMS is labeled T and di

represents the distances between the AAMS and the points on the monument.

Tai = F (t, T, di); Tci = F (t, T, di); Hai = F (t, H, di) where i ∈ [1, 4]
(1)

2. The connectionist system design

On the base of previous items we drawn some hypothesis about the solution
of the problem and we concluded that an appropriate tool could be a neural net-
work. In particular, neural networks like multi-layer perceptron [[Rosenblatt
et al., 1958]], [[Bryson et al., 1969]], [[Haykin, 1994]], radial basis function [
[Lowe, 1995]], [[Light, 1995]] or Hopfield network [[Hopfield et al., 1986]], [
[Jordan et al., 1997]] could be able to solve the problem.
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Figure 2. The ambient temperature surveys obtained from the AAMS versus the ambient
temperature surveys obtained from the sensor number 2 (left side). The same parameters at 10
a.m. (*) and at 10 p.m. (.) (right side).

Among these kinds of neural networks, the Hopfield network (or more in
general recursive networks) seems to have the more appropriate features with
respect the problem. In fact, we were handling physical phenomena which
evolve depending on both their actual and previous state. Thus, a recursive
neural network as the Hopfield network, that produces its output depending on
both its input and all previous states including the present, theoretically could
be give more effective results than the other two kinds of neural networks.

The multi layer perceptron has been discarded, because several simple ex-
periments using it have given back not promising results.

Actually, we have at our disposal no timely continuous surveys because the
AAMS and the sensors often fault their measures. Thus, we think our training
set is not still suitable to train a recursive network because a lot of possible
states remain unknown. So, at last we have chosen the radial basis function as
show Fig. 3.

It could seems a simplistic model to estimate a very complex phenomenon,
but, in this first step of our research, it works only as an associative map be-
tween the AAMS surveys and the sensors surveys . Of course, some other
phenomena surely influence the measured ambient parameters as the presence
of wind. Unfortunately, we have at our disposal only information about the
wind coming from AAMS because the powder caused several troubles to in-
stalled wind sensors. Thus, we cant take into account this important parameter
yet.

In the future, when we will have to our disposal more complete sets of data,
we think to design a more complex and recursive system so that we can com-
pare the results.

The statistical evidence pointed out in the previous section, has had an im-
portant role also in the design of the connectionist system topology.

We have three input parameters: hour of survey and measures of ambient
temperature and air humidity. We would like to estimate, in four different



348

Figure 3. The connectionist system topology. The blocks named RB represent the radial basis
function. Ta, Tc and H represent, respectively ambient temperature, contact temperature and air
humidity. The subscripts from 1 to 4 represent the four sensors position.

points, the air temperature, the contact temperature and the air humidity. So,
at first, we decided the input-output dependences, considering all the outputs
always depending on the hour of survey, the output air temperature depending
on the input temperature, the output air humidity depending on the input air
humidity and the contact temperature depending on input air temperature.

Moreover, deciding to use a single radial basis function for each parameter
and each sensor, we designed a connectionist system whose each computa-
tional unit can be independently trained and tuned and, if it is necessary to
measure the same parameters in other points or new parameters at all, other
trained radial basis function can be added to the system making it scalable.

3. Implementation and experimental setup

The implementation and the simulations of the connectionist system have
been carried out using the Neural Network MathLab Toolbox. Since at the
time of the implementation, we have 1300 usable surveys covering the period
between August 2003 and February 2004, we partitioned the surveys in two
sets of 650 surveys for each. The first is used for training the radial basis
function, the second for testing the system. We chosen to build the two sets
using timely alternated surveys, so the two sets cover the same period.

During the experiment we trained and simulated many radial basis function
in order to optimize the spread of radial basis neurons of each radial basis
functions. Thus, we trained 30 radial basis functions for each parameter using
spreads covering the integer interval [10-40]. The results of the simulations,
with respect the south sensors, are showed in the Fig. 4. In this figure, along
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Table 2. the south sensors mean errors referred to the test set.

South West North East

Air Temperature (celtius degree) 0.65 0.67 0.64 0.74
Contact Temperature (celtius degree) 0.91 1.10 0.98 1.13
Air Humidity (percentage) 6.54 6.21 6.98 7.21

the X axis the number of surveys and along Y axis the errors are reported. The
behaviors of the other three virtual sensors are substantially the same. Using
the test set of data we obtained small mean errors as the table 2shows.

Recently, we have had an experimental proof of the effectiveness and ro-
bustness of the system testing it by means of a set of input data related to April
2004. Thus, using input data climatically different as regards those used during
the training of the system, we substantially obtained the same mean errors for
all virtual sensors.

Figure 4. Air temperature, contact temperature and humidity errors for the sensor on south
side of the pillar. The graphs are referred to the above described test set (from August 2003 to
February 2004).

4. Conclusions

A connectionist system of virtual sensors to support the monitoring of con-
servation state of monuments has been presented. We showed how is possible
to realize a set of virtual sensors in order to replace the physical sensors located
on the monument.

We designed a connectionist system having care to guarantee its scalability
and portability in terms of different applications. The obtained results look like
very good for the application target. In fact, the temperatures (air and contact)
means errors, as well as humidity mean error can be considered satisfactory
and they guarantee the monitoring process in which is more important the trend
of the ambient parameters than the high precision in the measurement.
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We also were encouraged to develop our research because we received the
approving by the Dr. Lorenzo Appolonia coming from “Soprintendenza ai
Beni Culturali della Regione Valle d’Aosta”, who evaluates such a methodol-
ogy effective to support the monitoring of cultural heritage damage.

Our future works will face two new challenges. The first consists in the
integration into the system of a new layer of radial basis functions at the aim
to refine the results. The second challenge takes into account also the surveys
obtained by another AAMS. Moreover, when we will have at our disposal more
complete sets of data, we think to design a more complex and recursive system
so that we can compare the results with this one.
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Abstract: Purpose of this work is the development of an automatic system which can be 
useful for radiologists in the investigation of breast and lung cancer. A breast 
neoplasia is often marked by the presence of microcalcifications and massive 
lesions in the mammogram. The first are a very small object in a noise 
background and the second are large object with particular shape. The need for 
tools able to recognize such lesions at an early stage is therefore apparent. In this 
article is shown  an application of artificial neural network on the imaging 
analysis in mammography. The results obtained in terms of sensitivity and 
specificity when it has been tested alone and then used as second reader will be 
presented. We present also an overview about the methods developed for 
pulmonary nodule detection in CT images and the preliminary results obtained 
with a pre-processing filter will be also presented. 

Keywords: CAD, neural networks, breast cancer, lung cancer, nodule detections 

1. Introduction 

Breast and lung cancers are reported as the leading causes of cancer 
deaths both in United States and in Europe. A reduction of breast cancer 
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mortality in asymptomatic women is possible in case of early diagnosis, 
which is available thanks to screening programs, a periodical 
mammographic examination performed in general for 49-69 years old 
women [Feig and Yaffe,1995][Karssmejer,1999][Viborny and Giger,2000]. 
A breast cancer is often marked by the presence of microcalcification 
clusters and massive lesions and mammography is widely recognized as the 
only imaging modality useful for the early detection of such abnormalities. It 
is usually realized by screen-film modality but digital detectors are 
becoming widespread. It has been estimated that screening-programs 
radiologists fail to detect up to approximately 25% breast cancers visible on 
retrospective reviews and that this percentage increases if also minimal signs 
are considered. Sensitivity (percentage of pathological images correctly 
classified) and specificity (percentage of non-pathological images correctly 
classified) of this examination appreciably increase if two radiologists 
independently analyze the images. Independent double reading is currently 
strongly recommended as it allows the reduction of the rate of false negative 
examinations by 5 to 15%. The recent technological progress has led to the 
development of several Computer Aided Detection (CAD) systems, which 
could be successfully used as second readers. The MAGIC5 Collaboration 
aims at the development of tools that would help in the early diagnosis of 
breast cancer and in this paper the characteristics of the CALMA CAD 
software [Bottigli at al.,2002] will be described and its performance will be 
reported. The case of lung cancer is more complex: the overall 5-years 
survival rate is only 14% [Gurcan at al.,2002] and in the last two decades 
there has been no significant improvement, probably due to the lack of a 
screening protocol tested with reliable results. So an overview about the 
problems related to lung cancer screening, in terms of opportunity and 
modalities of lung cancer early detection, will be presented, and an 
evaluation of the possible impact of CAD also in this field will be discussed. 

2. Materials and methods 

2.1 Breast 

A Computer Aided Detection system (the CALMA CAD), which approach 
consists in the analysis of each mammogram available per patient, has been 
developed [Bottigli at all,2002].
The images (18x24 cm2, digitized by a CCD linear scanner with a 85 m
pitch and 4096 grey levels) are fully characterised: pathological ones have a 
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consistent description which includes radiological diagnosis and histological 
data, while non pathological ones correspond to patients with a follow up of 
at least three years. 
The presence of suspicious areas for massive lesions or microcalcification 
clusters in one or more mammogram results in a possible cancer diagnosis. 
The relatively large size of a mammogram brings to the need of reducing 
data input with no loss of information before proceeding to the classification, 
in order to perform an efficient detection in a reasonable amount of time. 
Therefore the approach is a multi-level one. The lower levels are demanded 
to reduce the amount of information without excluding ill regions (demand 
of sensitivity values close to 100%), whereas the upper levels are requested 
to perform the classification. In particular, the analysis is organized into 
three general steps both for massive lesions that for microcalcification 
clusters search: data reduction (non-interesting regions of the mammogram 
are eliminated  with the consequent reduction of the amount of data passed 
to the subsequent step); feature extraction (relevant characteristics are 
extracted out of the selected regions); classification (the selected regions are 
classified on the basis of a degree of suspiciousness). 
Massive lesions are rather large (diameter of the order of cm) objects with 
very different shapes and show up with a faint contrast slowly increasing 
with time. 
The automated Massive cluster analysis was made using the following 
approach:

Select maximum intensity position, by starting from left top corner of the 
mammogram the absolute maximum of intensity is found 
A set of concentric rings, 5 pixels wide, up   to a maximum radius of 247 
pixels (~ 2 cm)  is built. 
The pixel average intensity in each ring is  computed. 
The most external ring, which defines the ROI radius (R), is that ring 
whose average intensity is less than a given minimum threshold. 
The entire portion inside the ROI radius is   then removed and stored for 
further analysis. 
A new maximum (a new centre) is sought in the remaining matrix. 
Back to the beginning  until one of the following condition is verified : 
    - 100  maximum  are  found 
    - the n-th maximum intensity is  less than a threshold 
For radius, r = R,  2/3 R,  1/3 R , the   parameters  are  used as INPUT in 
a FFNN with 9 input, 6 hidden, and 1 output neurons to distinguish 
between pathological       and non-pathological ROI.
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Figure 1. The original mammogram (left), the selected patterns containing the ROIs (middle), 
and the remaining image (right). 

The features extracted to represent ROI are three statistical moments: 
average, variance, skewness (the last feature being index of distribution 
asymmetry) of the intensity distribution as functions of r. For the case of a 
massive lesion, the average intensity increases, the variance decreases and 
the symmetry increases at decreasing r.

The adopted Neural Network is a feed-forward back-propagation 
supervised network trained with gradient descent learning rule with 
“momentum” to quickly move along the direction of decreasing gradient, 
thus avoiding oscillations around secondary minima. The software is SNNS 
v4.1 (Stuttgart University) [Zell  et al.,1995]. The weights were determined by 
training the network with the training set and minimizing the mean squared 
error (MSE) of the validation set. The minimum MSE value was achieved 
after 500 training epochs.

2.2 Lung 

It has been proven that early detection and resection of lung cancer can 
improve the prognosis significantly [Itoh et al.,2000]: the overall 5-year 
survival rate of 14% increases to 49% if the lesion is localized and decreases 
to 2% if it has metastasized and for Stage I cancer is 67%. The problem is 
that early curable lung cancers usually produce no symptoms and are often 
missed in mass screening programs in which chest radiography, which has 
been used for detecting lung cancer for a long time, is employed [Armato et 
al.,2002]. Lung cancer most commonly manifests as a non-calcified 
pulmonary nodule.
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We show the  application of an effective nodule enhancement filter as a 
pre-processing step ; the approach  reported is made by Q. Li, S. Sone and 
K. Doi [Li et al.,2003]. 

The goal consists in a filter able to selectively enhance nodules, blood 
vessels and airway walls. Assuming dot and line as idealized shapes for 
nodule and vessels, respectively, the starting point is the construction of 
enhancement filters for dot and line in 2D image space, which would take 
into account also the effect of noise and the scale of the object. The method 
can then be generalized to 3D image space by considering the three idealized 
basic shapes of dot, line and plane. The filter obtained is based on the eigen 
value analysis of the Hessian matrix at each location in two-dimensional 
(2D) of three-dimensional (3D) image space.

3. Results 

3.1 Breast 

The software developed for the automatic search of massive lesions has 
been trained on a training set of 515 patterns (102 containing opacities and 
413 without) and tested on a test set composed of 515 different images 
(again 102 containing opacities and 413 without), all extracted from the 
CALMA database [Bottigli et al.,2002]. The best results obtained by means 
of this procedure are 90% for sensitivity and 85% for specificity.

The software developed for the automatic search of microcalcification 
clusters has been tested on a dataset of 676 patterns containing 
microcalcification clusters and 995 without microcalcification clusters, all 
extracted from the CALMA database [Bottigli et al.,2002]. In particular, in 
the training phase 865 patterns (370 with and 495 without microcalcification 
clusters) were used, whereas the test set consisted in 806 patterns (306 with 
and 500 without microcalcification clusters). The best results obtained are 
92% for both sensitivity and specificity.

The results obtained in the test of the CALMA CAD as second reader in 
the search of microcalcification clusters [Lauria et al., 2003] are reported in 
terms of sensitivity and specificity variations in Table 1. The increment in 
sensitivity of radiologists supported by CALMA ranges from 10.0% (reader 
B) to 15.6% (reader C) with a slight increase of the number of false 
positives. The decrease in specificity was more significant for the least 
experienced of the radiologists. Az area increased with CALMA, the 
variation ranges from 0.01 to 0.06, independently of the skill of reader. It is 
worth noting that no decrement in specificity has been reported for the 
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radiologist A (the more expert one) when CALMA CAD is used as second 
reader in the search of microcalcification clusters. 

Table 1. Sensitivity and Specificity values of radiologists without and with CALMA System 
 Sensitivity Specificity 

Alone With CALMA Alone With CALMA 

A 82.8 % 94.3 % 87.5 % 87.5 % 
B 80.0 % 90.0 % 91.7 % 88.4 % 

C 71.5 % 87.1 % 74.2 % 70.9 % 

The average value of sensitivity for a radiologist alone is 78.1% 5.9%,
the average value of sensitivity with the aid of CALMA CAD is 
90.5% 3.6%. These values, are in accord with previous works [Lauria et al, 
2003], where an increment in sensitivity is shown when a CAD system is 
used as second reader.

3.2 Lung 

 The dot enhancement filter described in [Itoh et al.,2000] has been 
reproduced and preliminary tested, previously on artificial images and then 
on real standard spiral CT images. In Figure 2 the results obtained on a non 
pathological image are reported. We can see that after the processing of the 
original image (left) with the 2D filter some structures are still present on the 
processed image (middle). These probably correspond to sections of vessels, 
and the processing with the 3D filter (right) eliminates them. By contrast, in 
the case of the pathological image reported in Figure 2, the nodules are 
effectively enhanced and are well visible in the image processed by the 3D 
filter.

Figure 2. In order it is shown from the left the original image in a non-pathological case, the 
output of the 2D and 3D filters. Then it is shown the original image in a pathological case and 
output of the 3D filter. 
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4. Conclusion 
 A CAD system for the search of massive lesions and microcalcification 
clusters has been developed and characterized in terms of sensitivity and 
specificity on a large database of digitized mammograms obtaining good 
results. Moreover, it has also been successfully tested as second reader. As it 
has been happened in mammography, CAD may be a valuable alternative to 
double reading also for detection of lung cancer on CT images screening. A 
preprocessing filter able to select and enhance pathological nodules in a 
background in which are present non pathological structures which appears 
very similar to pathological nodules in the 2D projections of CT scans has 
been preliminary tested on clinical images. It can be optimized and become 
the first step of an automatic system for the search of nodules in lung CT 
images.
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Abstract This paper proposes a new neural network approach to the classification of vehi-
cles in image sequences recorded by a stationary camera. The novelty consists in
organizing the tracking data into directed acyclic graphs and in the use of recur-
sive neural networks to discriminate which vehicle is represented in each graph.
Some preliminary experimental results from real-world traffic scenes prove the
viability of the method.

Keywords: Vehicles Classification, Recursive Neural Networks, Graphs

1. Introduction

The problem of localizing, tracking and classifying vehicles in image se-
quences recorded from real-world traffic scenes has been studied extensively
in the past ten years [Kastrinaki et al., 2003]. Many approaches to object local-
ization and tracking has been attempted, using a variety of 2D e 3D techniques.
Working with a set of tridimensional models [Tan et al., 1998], [Kollnig and
Nagel, 1997], [Haag and Nagel, 1999] can lead to good performance but it be-
comes computationally expensive as the number of models increases. More-
over, this approach can only detect objects that have been modeled in advance,
therefore it is less useful if this condition is not completely met, as in generic
surveillance tasks [Cavallaro et al., 2002]. Recognition and classification may
also be performed directly on the image domain with good results [Gupte et al.,
2002], but model-based approach has been proved to be the most accurate and
robust against viewpoint changes, although again computationally expensive.
In literature there are many papers that use three-dimensional tracking and
classification with models of various types of vehicles, expecially cars (e.g.
sedan, wagon, etc.), that are projected to image plane and compared with the
recorded images [Sullivan, 1992], [Sullivan et al., 1997]. Several researches
[Sullivan et al., 1995], [Koller, 1993] have proposed to use detected image fea-
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Figure 1. An overview of the system

tures as physical forces that deform vehicle models, as this leads to improved
performance.
After the development of the neural paradigm, various attempts have been
made to use neural networks in object tracking and recognition and in lane
detection for autonomous vehicle guidance.

In this paper we propose to classify vehicles with a particular neural model,
called recursive network [Frasconi et al., 2001], that is trained on tracking in-
formation. The system used to provide necessary data for localization and
tracking of vehicles from image sequences is the SCOCA system (System for
COunting, Classifying and tracking Automatically vehicles in a road intersec-
tion) developed in the TeV (Technology of Vision) group of ITC-irst (Trento,
Italy)1. It uses background subtraction and region grouping for vehicle detec-
tion and tracking, and implements a rather sophisticated two stage classifica-
tion, with a model-based phase and then a feature-based refinement.

Our goal is to explore the effectiveness of an alternative classifier featuring
neural techniques in order to discriminate between five classes of vehicles:

- car

- motorcycle or bicycle

- van

- lorry or bus

- pedestrian

Tracking information from SCOCA system are collected in data structures called
Objects. These Objects are preprocessed and coded into graphs which are used
to train and test our neural classifier. An overview of the system is shown in
Fig. 1.

Object structure

82 ...

80 202 211   0

81 207 213 −11

OBJECT

SCOCA MODULES

(localization and tracking)

PREPROCESS
CLASSIFIER

NEURAL

GRAPH

RESULTS
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This paper is organized as follows. Next section outlines data structures result-
ing from SCOCA tracking module, Sect. 3 describes the proposed approach,
while Sect. 4 outlines some preliminary experimental results from real-world
traffic sequences. Finally, last section draws some conclusions.

2. Tracking

The tracking phase consists in localizing objects in the scene and detecting
their movements from one frame to the next. The SCOCA system’s localization
module uses background subtraction with automatical updating of the back-
ground through Kalman filtering [Zanin, 2000]. Thresholding obtained image
results in a binary map (the so called object map [Gupte et al., 2002], [Koller
et al., 1994]), where the detected pixels are grouped together. Before they
are assigned to hypothetic objects, regions too small are deleted, as probably
caused by noise.

In most cases, this technique provides good global performance, but at the
cost of high computational burden. Therefore, real time costraints make apply-
ing background subtraction to each frame quite unfeasible with today general
purpose hardware. One solution could be to work with frames at lower resolu-
tions but it doesn’t lead to satisfactory results. The project developed by TeV
reseachers overcomes this problem executing background subtraction not in
all frames, but only every five or seven. Between two consecutive subtractions
they resort to a less expensive algorithm, which tracks, instead of objects on
the whole, only some their local features that are easy detectable, like edges or
cornes, i.e. points with high values for intensity gradient.

The information collected during the tracking step is stored in text files. For
each hypothetic vehicle a file (called Object file) is created, containing a row
for each frame in which it was visible in the camera’s field of view. When
background subtraction is performed, the row contains a reference to the blob
detected by that procedure, with its evaluated position, velocity (in pixels/s)
and displacement from previous subtraction. For the other frames, on the con-
trary, no information about the blob is available, as the tracking algorithm is
different (Fig. 2).
During tracking it may happen that two or more vehicles are mixed up in a
single object. This is typically due to occlusions among vehicles or to the
presence of strong shadows. Often the vehicles, due to their movement, are
distinguishable in some frames and merged in the others. In this case the Ob-
ject file mantains two sets of information until it is possible and then reports
only features about the compound resulting from the fusion.
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Object file
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Figure 2. A typical Object file
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Figure 3. Workflow of the proteomics experiment

Figure 4. Graph structure with fusions

3. Preprocessing phase and neural network classifier

The tracking information collected on each object during all the time in
which it was visible are saved in a particular kind of data structure. In order to
learn that structure with the recursive neural classifier it must be represented
by a DPAG (Directed Positional Acyclic Graph, [Frasconi et al., 2001]).

For each frame in which the object is visible and the background subtraction
is performed a node of the graph is built. As a consequence each object will
be represented by a sequence of nodes, each one connected to the next with an
oriented arc. It is important to remark that we choose to make the connections
flow in the opposite direction with respect of time, so that the first node will
be associated with the last view of the object in the image sequence. The cases
of fusion of one object into another is represented by a ramification in the
structure of the graph (Fig. 4).
Given the way in which SCOCA tracking data are built and the rule followed
in arcs orientation it is not difficult to understand that the obtained graphs are
nothing else than trees, so they surely have a supersource (namely their root)2.

The label associated with each node contains geometrical features that have
been extracted from the blobs detected during the localization phase. In details,
the label contains the area of the blob, the principal and secondary axes of
blob’s convex hull3 and a concise description of blob’s shape.

The principal axis, by definition, is the axis that passes through the center
of mass of the convex hull and in respect of which the inertial momentum
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Table 1. Results of two tests of recognition of cars. Lines represent true class of the object,
while columns report the output of the classifier

YES NO TOTAL ACCURACY

yes 53 9 62 85.48%
no 13 35 48 72.92%

TOTAL ACCURACY: 80.00%

YES NO TOTAL ACCURACY

yes 72 3 75 96.00%
no 12 35 47 74.47%

TOTAL ACCURACY: 87.70%

is minimum, providing that each pixel is given unitary weight. The secondary
axis, on the contrary, is simply the one orthogonal to the principal. The concise
description of the shape is given by a fixed length vector, that for our scope was
chosen to be a 64-bits vector, or more precisely, a 8×8 matrix that is read line-
by-line. Each bit of the matrix represents a square of a grid, suitably scaled
and superimposed on the object contour. We set the value of each bit at “1” if
the square is crossed by the contour and at “0” elsewhere [Monfardini, 2004].

The proposed classifier consists of five different neural nets, one for each
vehicle class, whose aim is to detect the presence in each object of a vehicle of
its own class. The reason for this architectural choice is that there is a non neg-
ligible percentual of cases in which the tracking structure contains information
about more than one vehicle. Therefore, a single net whose output codifies
classes in a one hot manner is not suitable for the task.

4. Experimental results

The movies used for experiments was acquired in the city of Trento (Italy).
The atmospherical conditions were good and there was quite an heavy traffic
(but without traffic jams). Tracking phase resulted in more than 500 objects
- not all necessarily describing a single vehicle - that have been divided in
training, cross-validation and test sets. Due to the reduced number of vehicles
of certain classes, we present only the results about recognition of cars and
motorcycles (or bicycles).

The architecture of classification nets was chosen with a trial and error pro-
cedure; optimal configuration resulted in a three-layer configuration with ten
state neurons and ten hidden neurons. Two indipendent tests of recognition of
cars yielded the results of Table 14.
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Table 2. Classification rate in the second car recognition test with different numbers of hidden
neurons

Table 3. Results of two tests of recognition of motorcycles and bicycles

Varying the number of hidden neurons of the net affects the performance of the
classifier. As shown in Table 2 for the second test, ten hidden neurons give the
best results.

The classification of motorcycles (and bicycles) has been somewhat harder,
as the number of positive examples in training set was considerably minor
(Table 3). Since net’s behaviour would have been too much conditioned by
numeric disparity from positive and negative examples, these results were ob-
tained with an artificially balanced training set.

In order to demonstrate the efficacy of the proposed structural approach
some experiments of car recognition with traditional feedforward networks
have been made. Obviously this neural model cannot be trained on entire
graphs, but it can learn to recognize the presence of a car in a frame from
the features evaluated. In details I used a two-layer feedforward networks with
sigmoidal activation units and linear output units and the net was trained us-
ing resilient backpropagation, a variant of standard backpropagation that offers
favourable convergence properties [Riedmiller and Braun, 1993]. First exper-
iment was done without balancing the training set and the results, obtained as
mean of five runs and quite insensitive to the number of hidden units, are shown
in Table 4. Balancing the training set leads to slightly better performance with
ten hidden units, as shown in Table 5.

# hidden units Rate
5 77.05%

10 87.70%
20 82.79%

YES NO TOTAL ACCURACY

yes 4 4 8 50.00%
no 11 91 102 89.22%

TOTAL ACCURACY: 86.36%

YES NO TOTAL ACCURACY

yes 5 8 13 38.46%
no 18 91 109 83.49%

TOTAL ACCURACY: 78.69%

Classification
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Table 4. Classification rate in the car recognition test with two-layer feedforward networks
with different numbers of hidden neurons and unbalanced training set

Table 5. Classification rate in the car recognition test with two-layer feedforward networks
with different numbers of hidden neurons and balanced training set

As one could expect, results with feedforward networks are significantly
worse than using recursive neural model, and this proves that learning the en-
tire image sequence in which each vehicle has been visible helps to improve
global classification performance.

5. Conclusions

This paper proposes a new neural network approach to the classification of
vehicles from traffic sequences recorded by a stationary camera. The tracking
data are organized into DPAGs and used to train recursive neural classifiers.
Preliminary experimental results show the effectiveness of this technique w.r.t.
the traditional feedforward networks and suggest that it reaches a favourable
compromise between computational complexity and quality of generalization
on unseen examples.
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Notes

1. For further details see http://tev.itc.it/TeV/Research/SCOCA.html and [Messelodi et al., 2004].

2. The presence of a supersource in each graph is mandatory for the learning scheme adopted.

3. The convex hull of a plane figure is the smallest convex polygon that contains it.

4. In our domain the classification rate can be defined as the number of correct classifications w.r.t. the
total amount of objects created in the tracking phase.
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Abstract In this paper we propose a neural network identification of a mathematical model
called MINMOD, which describes the interactions between glucose and insulin
in human subjects, in order to realize an adequate model for patients suffering
from Diabetes Mellitus Type 2. The model has been tested on the basis of clin-
ical data and it can correctly reproduce glucose and insulin reply and temporal
evolution, according to experimental data test. Using neural networks, we can
predict the glucose temporal evolution without invasive technique for patients,
with the aim to determine the clinical effects to be made in case of pathological
behaviors.

Keywords: Diabetes Analysis, Glucose-Insulin Interaction, MINMOD Model, MoG Neural
Network.

1. Introduction

Insulin is a protein made up of 51 amino acids, which is secreted in small
quantities by the pancreas by means of the so-called “β-cells”. The insulin se-
cretion can be highly increased in order to answer to several inputs, i.e. sugars
(first of them glucose), amino acids, vagus activity. Insulin helps the storage
in target cells of glucose and lipids, which are important energy sources. In-
sulin also affects cells growth and the metabolism of many tissues. Besides, it
promotes the protein synthesis, increasing the amino acids transport and stim-
ulating ribosome activity. Finally, it helps glycogen synthesis, restoring it af-
ter every muscular activity. Insulin is brought by the bloodstream to specific
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receptors that have been discovered in quite all the tissues membranes. How-
ever, biological effects due to the interaction between insulin and receptors
have been found in few tissues: liver, muscle and adipose tissue. Glucose is
the most important physiological stimulation for insulin secretion. Insulin re-
ply to a protracted glucose stimulation of the β-cells is split into two phases:
during all the stimulation period a former high secretion, rapidly decreasing,
and a second delayed peak of secretion.

When glucose is no more able to stimulate the β-cells, in the human sub-
ject several dysfunctions appear. Among them, one of the most serious is the
so-called Diabetes Mellitus (DM). It is characterized by hyperglycaemia, due
to a complete absence of insulin or to a partial deficit, related to its reduced
biological efficiency. DM can be classified into two forms [Faglia, 1997]:

DM type 1, Insulin-Dependent (IDMM). It is characterized by a quite
complete absence of insulin secretion and represents the 10-15 % of all
the DM pathologies;

DM type 2, Non Insulin-Dependent (NIDMM). It is characterized by
a low insulin secretion, associated with tissue refractoriness to insulin
activity; it represents the 85-90% of all the DM pathologies.

In order to model the mechanism of glucose regulation in the blood, we
need to evaluate quantitatively how insulin controls the glucose absorption by
the tissues as well as the stimulation action, done by glucose, on insulin pro-
duction by the pancreas β-cells. This information is clinically considerable,
because it permits to diagnose and classify different pathologies, and con-
sequently to distinguish the forms of glucose intolerance due to type 1 or 2
DM. Clinical experience is in general based on experimental tests: Intra Ve-
nous Glucose Tolerance Test (IVGTT) and Intra Venous Insulin Tolerance Test
(IVITT). Unfortunately, these techniques are invasive and sometimes not ef-
ficient. Consequently, many researches on mathematical models suited to re-
produce insulin-glucose concentrations and temporal behaviors have recently
focused.

Several models have been presented in the literature [G.M.Grodsky, 1972;
J.R. Guyton, 1978]. The one called MINMOD, introduced by Bergman and
Cobelli in the early Eighties, has found more interesting applications in med-
ical practice. More recently, new interest has been devoted to this topics
[G. Baratta, 2002; C. Dalla Man, 2002; A. De Gaetano, 2000], trying to im-
prove the original model or suggesting new ones.

The temporal evolution of insulin and glucose is represented in this model
by the compartmental scheme illustrated in Fig. 1 [G. Pacini, 1986].

This model is considered as an optimal one, provided that the following as-
sumptions for the simulation of the kinetics of glucose distribution , following
a glucose injection, are met:
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Figure 1. Compartmental scheme for MINMOD.

it is sufficient to assume that injected glucose distributes into a single
compartment;

glucose disappearance occurs in proportion to the plasma glucose con-
centration;

insulin in a compartment remote from plasma (peripheral) accelerates
the disappearance of glucose.

The glucose and insulin compartments are represented by functionals in
Fig. 1, which act on the input functions (for example, food ingestion) and
whose values are the output functions (i.e., insulin and glucose) of the model.
The parameters and variables of the model are the following ones:

insulin and glucose concentration in plasma: i′ and G (in μU/ml and
mg/dl, respectively);

concentration of insulin input: i(t) (in μU/ml);

glucose concentration in plasma at time t = 0 (i.e. the starting time): B0

(in mg/dl[minute]−1);

concentration of net hepatic glucose: B = B0 −
(
k5 + k6i

′
)

G (in

mg/dl[minute]−1);

kinetics of insulin in the remote compartment: k2, k3(in [minute]−1);

effect of glucose to enhance its disappearance: k1, k5 (in [minute]−1);

effect of remote insulin to enhance glucose disappearance: k4, k6 (in
ml/[minute]−1).

Neural Network in Modeling Glucose-Insulin Behavior
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Figure 2. Retarded predictor. Figure 3. Recursive predictor.

Usually, the analysis for determining the glucose behavior, and the para-
meters used in the differential equations of MINMOD, is effectuated using
IVGTT and least mean squares methods. Unfortunately these techniques are
not so effective, because there is a large number of complex variables present
in the human organism. Then a robust technique to obtain the correct glucose
response is mandatory. In this regard, we propose in this paper a novel ap-
proach to forecast the glucose behavior of the MINMOD model, by fitting the
response of this model to real data. It is based on a predictive structure, where a
neural network is trained to estimate future samples of the glucose time series,
based on past samples of the same one.

2. Prediction for Glucose Behavior in MINMOD

For MINMOD glucose behavior prediction we have utilized two different
predictors, retarded and recursive, based on neural network. The compartmen-
tal scheme of predictors used are shown in Fig. 2 and Fig. 3.

In the first case, with retarded predictor, we have used a samples set input,
Sn, delayed of a time T (Time Lag) chosen equal to 1. According to clinical
experience in the following we use 3 samples (D = 3) and glucose time series
is sampled at a rate of 20 minutes. We remark that the optimal embanding
parameters for each time series, T and D, can be chosen using classical meth-
ods in time series analysis [Abarbanel, 1986]. However values of T and D
larger than the ones previously indicated make the model unsuited for patient’s
use. Then the net is trained to forecast the sample Sn+m at a distance m. In
the other case, recursive predictor, we use as inputs the samples Sn, Sn−1 . . ..
Then the prediction of sample Sn+m comes from a feedback of the past pre-
dictes sample.

We will briefly introduce in this section the architecture of the neural net-
work used in this regard. It is based on a MoG (mixture of gaussian) model,
where the distribution of data is the joint space. The joint density of data
p

(
x, y

)
can be estimated with no distinction between input and output vari-

ables. The joint density is successively conditioned, so that the resulting p
(
y | x

)
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can be used for obtaining the mapping to be approximated [Bishop, 1995]. The
density p

(
y | x

)
is based on the determination of a mixture p

(
x | y

)
of C dif-

ferent Gaussian components in in the joint input-output space D ×N ; i.e.:

p
(
x, y

)
=

C∑
j=1

π(j)G(j)
x,y

(
x, y

)
(1)

where π(j)is the prior probability of the j-th Gaussian component G
(j)
x,y, j =

1 . . . C, which is equal to:

G(j)
x,y

(
x, y

)
= α(j) exp

[
−1

2

(
z −m(j)

)t
K(j)−1

(
z −m(j)

)]
(2)

z =
[
x

y

]
; α(j) = (2π)−

D+N
2

∣∣∣K(j)
∣∣∣− 1

2
(3)

with its mean and covariance matrix respectively equal to:

m(j) =
[
mx

(j)

my
(j)

]
; K(j) =

[
K

(j)
xx K

(j)
xy

K
(j)
yx K

(j)
yy

]
(4)

The density model p
(
y | x

)
is evidently based on a suitable clustering pro-

cedure yielding several regions of the input space where the input-output map-
ping can be locally approximated by the linear functions m

(j)
y|x, j=1. . . C. In fact,

when an input pattern x is presented to the network, the corresponding output
y can be determined in two ways:

Soft Least Square Estimation: y
soft

=
C∑

j=1
hj (x) m

(j)
y|x;

Hard Least Square Estimation: y
hard

= m
(q)
y|x; q = arg maxj {hj (x)}

Several preliminary tests encouraged us to use the Soft Least Square Esti-
mation, since its evident smoothness in approximating the mapping can en-
sure better results. The architecture of the MoG neural network resulting from
the determination of the previous density model, i.e. formulas from (1) to
(4), is shown in Fig. 4. In order to train an MoG network we can adopt the
SHEM (Splitting Hierarchical Expectation Maximization) algorithm proposed
in[M. Panella, 2003]. It is based on the maximum likelihood approach for es-
timating the parameters of the whole Gaussian mixture. The most important
benefit of SHEM is the automatic selection of the number C of Gaussian com-
ponents. It employs a hierarchical approach based on a constructive procedure,
where C is increased progressively and only one run of the EM algorithm is
necessary for each value of C. In fact, the SHEM algorithm eliminates the ran-
dom initializations of EM and consequently the necessity to optimize different

Neural Network in Modeling Glucose-Insulin Behavior
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Figure 4. Architecture of the MoG network.

Figure 5. Analysis of retarded and recursive predictor in test 1.

EM solutions for a fixed C. Consequently, the computational cost of SHEM is
heavily reduced.

The implementation of a predictor will coincide with the determination of
a non-linear data driven function approximation model. For this purpose, in
[9] we employed the MoG model illustrated in Sect. 2, trained by the SHEM
algorithm; the resulting predictor will be denoted as “MoG Predictor".

Analysis of results

In the following we show in Table 1 the results with a comparison of Signal-

to-Noise ratio (SNR) defined by 10 log10

∑
n

S2
n∑

n
(Sn−Ŝn)2

where Ŝn represent the

predicted value using MoG network that is y
soft

. We analyzed different cases
using predictors illustrated in Sect.2, and illustrating six different figures that
represent the response of the recursive analysis in the different cases. As evi-
denced in Table 1 the training procedure is performed by progressive increas-
ing the number of sequences (glucose temporal evolution), thus increasing the
regularization of the trained MoG network.
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Table 1. Comparison between Signal-to-Noise ratio (SNR).

Test Input set 500 elements Training Retarded Recursive
set (SNR) predictor predictor

test (SNR) test (SNR)

1 3 sequences for training 40.504 dB 34.016 dB 2.1381 dB
2 sequences for predictors

2 8 sequences for training 38.524 dB 38.524 dB 9.6571 dB
7 sequences for predictors

3 50 sequences for training 38.024 dB 37.736 dB 28.496 dB
30 sequences for predictors

Figure 6. Analysis of retarded and recursive predictor in test 2.

Figure 7. Analysis of retarded and recursive predictor in test 3.

Neural Network in Modeling Glucose-Insulin Behavior
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We can observe that with a progressive increasing of input test set, we can
follow the complete trend of glucose behavior as shown in previous table.

3. Conclusion

In this paper, we have proved that by means of neural networks, we can
predict the glucose temporal evolution for patients. Moreover the analysis of
patient’s past clinical history has been shown to be effective in order to dras-
tically lower the number of experimental observation needed to fit the correct
glucose evolution. Consequently, from a medical and therapeutic point of view,
this method may have some interesting implications, in order to single out pos-
sible pathological cases, without involving techniques which are invasive for
human patients.
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Abstract The reliability of communication networks is assessed by employing two ma-
chine learning algorithms, Support Vector Machines (SVM) and Hamming Clus-
tering (HC), acting on a subset of possible system configurations, generated by
a Monte Carlo simulation and an appropriate Evaluation Function. The experi-
ments performed with two different reliability measures show that both methods
yield excellent predictions, though the performances of models generated by HC
are significantly better than those of SVM.

Keywords: Reliability, Communication network, Machine learning, Hamming Clustering,
Support Vector Machine

1. Introduction

The central role played by communication systems in most real world situ-
ations requires an adequate design phase of the networks to be realized or up-
dated. Besides basic constraints concerning the links to be established or the
performances to be achieved (connection speed, throughput, etc.), an important
issue to be addressed regards the reliability of the communication system.

A convenient way of modeling communication system is to adopt an
undirected or a directed connected graph, called Reliability Block Diagram
(RBD), in which every node is associated with a system component. Edges
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represent links among them and can be associated with a binary variable xi,
assuming value 1 if the corresponding connection behaves correctly or value 0
otherwise. In this way, the whole system can be described by a Boolean vector
x = (x1, x2, . . . , xd), being d the number of edges in the RBD.

Also the state of the whole system can be operating or failed, and is therefore
described by a binary variable y. The Boolean mapping that associates every
input vector x to its corresponding output y is called Structure Function (SF ).

With every component xi we can associate a real value Pi in the range [0, 1],
which represents the probability that the corresponding link behaves correctly.
Usually, these probabilities are independent. A measure of the reliability for a
communication system is then given by the expected value of its SF . Different
definitions for the SF lead to different reliability indexes.

For example, the most widely studied reliability measure (s − t reliability)
assumes that two particular nodes, s (the source) and t (the terminal), are fixed:
the system is operating if there exists at least a working path from the source
node s to the terminal node t. In this case a depth-first procedure [Reingold
et al., 1977] can be employed to compute the SF .

However, in communication networks the connectivity is not a sufficient
condition for determining an operating state and the success of the network
also requires that a sufficient flow is guaranteed, which depends on the capacity
of the elements involved. Thus, a communication system performs well if and
only if it is possible to transmit successfully the required capacity. In this case,
to evaluate if a given state is capable or not of transporting a required flow, the
max-flow min-cut algorithm [Reingold et al., 1977] can be adopted.

An important problem with these reliability indexes and their extensions is
that in almost all the contexts of interest their evaluation require the solution of
an NP-hard problem [Stivaros and Sutner, 1997]. A possible way to reduce the
computational burden is to employ Monte Carlo techniques, which attempt to
produce an estimate of the network reliability by analyzing a subset of possible
system states x.

Generally, Monte Carlo techniques require a large number of SF evalua-
tions to establish the reliability of a system; therefore, it seems to be conve-
nient to employ a machine learning method for approximating the desired re-
liability expression through a reduced collection of SF values. To this aim
several different approaches have been considered in the literature: Neural
Networks (NN) [Mitchell et al., 2000], Decision Trees (DT) [Rocco, 2003],
Support Vector Machines (SVM) [Rocco and Moreno, 2002] and Hamming
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Clustering (HC) [Rocco and Muselli, 2004]. Among them, only DT and HC
are able to retrieve an analytical form for the approximated reliability expres-
sion of the network. A direct comparison [Rocco and Muselli, 2004] shows
that the performance of HC (in terms of accuracy) is significantly superior to
that of DT.

Nevertheless, SVM are widely considered as one of the classification de-
vices that achieve the highest values of accuracy in most real-world applica-
tions. Although SVM are not able to generate a comprehensible form for the
approximated reliability expression, one may wonder if they lead to a minor
number of errors in a practical situation. To this aim we compare empirical
models, produced by SVM and HC when applied to the samples generated by
a Monte Carlo simulation for different SF .

2. Support Vector Machines

Support Vector Machines provide a novel approach to the two-category clas-
sification problem [Vapnik, 1998]. Suppose we have to find the unknown
decision function g : R

d → −1, +1 that solves a given classification prob-
lem, by employing a set of n examples (x1, y1), (x2, y2), . . ., (xn, yn), ob-
tained through a random sampling of g(x). Like several other classifica-
tion techniques (e.g. neural networks, radial basis functions networks), SVM
searches for a good approximation of g(x) by analyzing expressions given by
sign(f(x)), where f is a real function f : R

d → R and sign(z) gives value +1
if z ≥ 0 and value −1 otherwise.

In particular, the following form for the function f(x) is considered by
SVM:

f(x) = b +
n∑

i=1

αiyiK(xi, x) (1)

where the symmetric function K(u, v) must be chosen among the kernels of
Reproducing Kernel Hilbert Spaces; for example [Vapnik, 1998]:

the Gaussian radial basis function (GRBF) K(u, v) = e−‖u−v‖2/2σ2

the polynomial function K(u, v) = (u · v + 1)p.

The scalar quantities αi in (1) are obtained by solving the following quadratic
programming problem:

min
α

1
2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)−
n∑

i=1

αi
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subject to the constraints

n∑
i=1

αiyi = 0 , 0 ≤ αi ≤ C, for every i = 1, . . . , n

where C is a real constant that derives from the application of Regularization
Theory to the solution of the classification problem at hand.

It can be easily seen that there is a 1-1 correspondence between the scalars
αi and the examples (xi, yi) in the training set. In particular, when αi =
0, the corresponding pair (xi, yi) does not give any contribution to the sum
in (1). Consequently, only the points xi with αi 	= 0 are considered in the
construction of the function f(x); these points are called support vectors, from
which the name Support Vector Machine for the device that implements f(x).

The application of SVM to the problem of estimating the reliability expres-
sion of a given communication network can be directly performed by employ-
ing the above general procedure to obtain a good approximation for the SF .
Since SF is a Boolean function we must substitute the output value y = −1 in
place of y = 0 to use the standard training procedure for SVM.

3. Hamming Clustering

As previously observed, the SF of a network can be written as a Boolean
function; thus, at least in principle, any method for the synthesis of digital
circuits is able to retrieve the desired SF from a sufficiently large training set.
Unfortunately, classical methods for Boolean function reconstruction do not
care about the output assigned to a case not belonging to the given training set.
Better results can be obtained by adopting a new logical synthesis technique,
called Hamming Clustering (HC) [Muselli and Liberati, 2002], which is able
to achieve performances comparable to those of best classification methods, in
terms of both efficiency and efficacy.

It can be easily seen that every system state x can be associated with a binary
string with length d. As usual, a simple metric, called Hamming distance, can
be introduced in the space of binary strings having the same length d; it is
defined as the number dH(x,z) of different bits in the two strings x and z:

dH(x,z) =
d∑

i=1

|xi − zi|

HC proceeds by grouping together binary strings that belong to the same
class and are close to each other according to the Hamming distance. A basic



Assessing Reliability Through Machine Learning Techniques 379

concept in the procedure followed by HC is the notion of cluster, sharing the
same definition of implicant in classic theory of logical synthesis.

A cluster is the collection of all the binary strings having the same values in
a fixed subset of components; as an example, the four binary strings ‘01001’,
‘01101’, ‘11001’, ‘11101’ form a cluster since all of them only have the values
1, 0, and 1 in the second, the fourth and the fifth component, respectively. This
cluster is usually written as ‘*1*01’, by placing a don’t care symbol ‘*’ in the
positions that are not fixed, and it is said that the cluster ‘*1*01’ covers the
four binary strings above.

Every cluster can be associated with a logical product among the compo-
nents of x, which gives output 1 for all and only the binary strings covered by
that cluster. The desired Boolean function can then be constructed by generat-
ing a valid collection of clusters for the binary strings belonging to a selected
class.

The procedure employed by HC consists of the following four steps:

1 Choose at random an example (x, y) in the training set.

2 Build a cluster of points including x and associate that cluster with the
class y.

3 Remove the example (x, y) from the training set. If the construction is
not complete, go to Step 1.

4 Simplify the set of clusters generated and build the corresponding Boolean
function.

Once the example (x, y) in the training set has been randomly chosen at
Step 1, a cluster of points including x is to be generated and associated with
the class y. As suggested by the Occam’s Razor principle, smaller sum-of-
product expressions for the Boolean function to be retrieved perform better;
this leads to prefer clusters that cover as many as possible training examples
belonging to class y.

However, searching for the optimal cluster in this sense leads to an NP-hard
problem; consequently, greedy alternatives must be employed to avoid exces-
sive computation times. One possible choice is to apply the Maximum cov-
ering Cube (MC) criterion [Muselli and Liberati, 2002], which sequentially
introduces a don’t care symbol in the position that reduces the Hamming dis-
tance from the highest number of training examples belonging to class y, while
avoiding to cover training examples associated with the opposite class. Several
trials on artificial and real-world classification problems have established the
good properties of the MC criterion.
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4. The Proposed Approach

To evaluate the performance of the methods presented in the previous sec-
tions, the network shown in Fig. 1 has been considered [Yoo and Deo, 1988].
It is assumed that each link has reliability Pi = 0.90 and capacity of 100 units.
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Figure 1. Network considered in experimental analysis [Yoo and Deo, 1988].

The goal of the analysis is twofold: to measure the accuracy of the models
produced by the considered techniques and to evaluate the quality of the relia-
bility estimates. The first task is performed through a 10-fold cross-validation
on a set of randomly chosen NT examples (x, y), where y = SF (x). Further
NM system states are then required to provide a reliability estimate.

Two different s − t reliability metrics, simple connectivity and guaranteed
flow, have been considered in our analysis. In the first case we have selected
NT = 2000 and in the latter NT = 5000; the value of NM has been always
set to 10000. Different kernels were tried for the SVM model with different
parameter choices; only best results are presented.

Table 1 shows the accuracies obtained for SVM and HC when analyzing
simple connectivity. The best SVM corresponds to a fourth order polynomial
kernel, based on 675 support vectors. The average system reliability based on
a depth-first procedure was 0.9943, while the approximated system reliability
obtained with SVM and HC was 0.9941 and 0.9934, respectively.

The accuracies obtained with SVM and HC when analyzing guaranteed flow
are shown in Tab. 2. Again the best SVM corresponds to a fourth order poly-
nomial kernel, based on 556 support vectors. The average system reliability
based on a max-flow min-cut procedure was 0.8976, while the approximated
system reliability using SVM and HC was 0.8989 and 0.8990, respectively.
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Table 1. Accuracy results obtained with cross-validation for simple connectivity.

Table 2. Accuracy results obtained with cross-validation for guaranteed flow.

In both cases models derived from SVM and HC correctly classify all the ex-
amples in the training set, while showing good generalization capacity. How-
ever, the results with HC are better than those obtained with SVM. The relia-
bility measures produced by both methods are always satisfactory.
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Number of Training Testing
Model Support Vectors Accuracy (%) Accuracy (%)

SVM-Polynomial: d = 4 675 100 95.15
SVM-Polynomial: d = 5 845 100 95.10

SVM-GRBF: 1/2σ2 = 0.016 481 100 94.60
SVM-GRBF: 1/2σ2 = 0.128 1529 100 94.10

HC 16.1 (Rules) 100 99.80

Number of Training Testing
Model Support Vectors Accuracy (%) Accuracy (%)

SVM-Polynomial: d = 4 556 100 98.46
SVM-Polynomial: d = 5 693 100 98.36

SVM-GRBF: 1/2σ2 = 0.016 404 100 98.26
SVM-GRBF: 1/2σ2 = 0.032 512 100 98.36

HC 25.3 (Rules) 100 99.38
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Abstract Disruption is a sudden loss of magnetic confinement that can cause a damage of
the machine walls and support structures. For this reason is of practical interest
to be able to early detect the onset of the event. This paper presents a novel tech-
nique of early prediction of plasma disruption in Tokamak reactors which uses
Neural Networks and Chaos theory. In particular, dynamical reconstruction and
chaos theory have been considered for choosing the time window of prediction
and to select the inputs set for the prediction system. Multi-Layer-Perceptron
nets have been exploited for predicting the incoming of disruption.

Keywords: Disruptions, Tokamaks, Chaos Theory

Introduction to the Problem

Disruption in a Tokamak device is an undesired event of sudden loss of the
energy confinement, where the plasma current and the thermal energy content
of a Tokamak plasma discharge collapse in an uncontrollable way, thereby gen-
erating mechanical forces and heat loads which threaten the structural integrity
of the surrounding structures. Therefore, this event is considered a critical
issue for the design of future experimental reactors. In this respect, develop-
ing reliable tools for the on-line prediction of disruption is a relevant design
activity for improving the performance of new devices. Observation of dis-
ruptions occurring in operating machines is the main source of information, to
be used for understanding the underlying physical mechanisms as well as to
study the possible disruption precursors. Recently, the Joint European Torus
(JET), some work has been carried out based on the analysis of a block of
disruptive shots that have been made available by the JET Team. The main
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objective is to design a signal processor capable to predict the onset of a dis-
ruption sufficiently in advance for the intervention of a control action. In the
recent literature, some works addressing the same problem have been proposed
[Wroblewsky, 1997], [Morabito and al, 2001]. Neural Networks (NN’s) and
Fuzzy Inference Systems (FISs) appears to be appropriate tools for facing this
problem from various perspectives. Firstly, there is a need of fusing various
sensory information in order to enhance the detection capability and to exploit
different detection mechanisms. Secondly, the network schemes are also more
amenable to hardware implementation of the alarm system than traditional ap-
proaches. Finally, the FIS can play a relevant role for allowing expert knowl-
edge to be translated in syntactic linguistic rules that are easily embedded in
the signal processor. The present study aims to design a processing system
that could be able to predict the incoming of disruptions by means of a suitable
choice of time windows of prediction. In particular, dynamical reconstruc-
tion and chaos theory have been considered for choosing the time window of
prediction and to select the inputs set for the prediction system. Multi-Layer-
Perceptron nets have been exploited for predicting the incoming of disruption.
The goal of the procedure is automatically predict the value of Mode Lock,
strongly linearly correlated with the ttd, which is not directly measurable by a
physical sensor, in order to in-time alarm the control system. The rest of this
paper is organized as follows: In the next section, we describe the features of
the available database, that refers to the JET machine. In Section 2, we briefly
review the chaos theory. Section 3 describes the way how chaos theory can be
applied to the disruption prediction problem. The paper ends with Section 4
which contains the conclusions of the work.

1. The JET Experimental Database

In this database, a set of measurements monitoring the plasma shots are
stored. A large number of them were analysed with the purpose to find the
technical causes, the precursors and the physical mechanisms of disruptions.
The analysed files derives from many years of experimental activity carried out
at the Culham Center, Oxfordshire, London (United Kingdom). The database
was built starting from the dynamics of a disruption in the zone of flat-top of the
plasma current in which the plasma is monitored to obtain a constant plasma
current (IPLA) and a stable confinement in terms of shape and position. The
choice of the variables to be used as predictors among the ones available in the
database is always the result of a compromise between the physical availability
of measurements and reliability of the related sensors and the peculiarities of
the processing model (kind of NNs) carried out in previous works. In the
case of missing data, some kind of filtering is used in order to complete the
time series. The interval of observation of the variables was limited to the time
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interval of [td−440ms; td−40ms] according to some physical insight; the left
40ms were omitted as not being relevant, since there is no sufficient time left to
control the shot. The time of sampling is 20ms and 20 samples for each channel
have been used. In order to test the null hypothesis and verify the percent of
false positive occurring, we have considered 1167 shots without disruption, and
701 disruptive shots. A record distinguishes the kind of shot: the outputs of
the network are labelled by means of vtargetTS for training database, vtargetVS
for validation database and vtargetTest for testing database. The outputs were
identified by considering that, in correspondence of a shot without disruption,
we have a series of 20 zeros (non disruptive shot). If the shot is a disruptive
one, the series of 20 values is a set of numbers in the range (0, 1) and thus a
sigmoidal function is used to represent the risk of disruption. In the present
approach, the series of 20 numbers is reconstructed on-line after the prediction
of the Mode Lock variable.

2. Chaos Theory: a Bird’s Eye Overview

A dynamical system is any system that evolves in time. Dynamical sys-
tems whose behavior changes continuously in time are mathematically de-
scribed by a coupled set of first-order autonomous ordinary differential equa-
tions dX̄

dt = F̄ (X̄, λ) where the components of the vector X̄ are the dynamical
variables of the system, λ is a set of parameters that we denote as control para-
meters, and the components of the vector field F̄ are the dynamical rules gov-
erning the behaviour of the dynamical variables. There is no loss of generality
in the restriction to autonomous systems, where F̄ is not an explicit function
of t is not an explicit function of R

n can be transformed into an autonomous
system in R

n+1. Under modest smoothness assumptions about the dynamical
rules, the solutions of the dynamical systems are unique and the dynamical
system is deterministic; that is, the state of the dynamical system for all time
is uniquely determined by the state at any one time. The existence of unique
solution does not necessarily mean that explicit algebraic representations exist.
However, if explicit algebraic solutions do exist and they can be used to predict
the future behavior of the system for all initial conditions, then the system is
said to be integrable. All linear dynamical systems are integrable. Explicit so-
lutions can be constructed for linear systems by first transforming to a new set
of dynamical variables in which the governing equations become decoupled.
One of the surprising and far-reaching mathematical discoveries of the past
few decades has been that the solutions of deterministic nonlinear dynamical
systems may be as random as the sequence of heads and tails in the toss of a
fair coin. This behavior is called deterministic chaos. Essentially, chaos is a
nonlinear behavior that exists between the realms of periodic and random. At
first glance, some chaotic systems may appear to regular and periodic, whereas
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others will appear strictly random; in both cases closer examination topples
these assumptions. Chaotic systems are deterministic and, the exact system
state can be written as X̄(t) = [x̄(t), x̄(t − T0), . . . , x̄(t − (k − 1)T0)] ∈ R

k

where t is a scalar index for the data series and T0 is the interval of obser-
vations. A key component of chaotic data analysis is Takens’ embedding
theorem [Kennel et al., 1992].Given a dynamical system, a scalar data mea-
surement, s(t) = h(x̄(t)) : R

k −→ R, dependent on the system’s complete
dynamics can be reconstructed into a d− dimensional vector series ȳ(t) =
[s(t), s(t + τ), . . . , s(t + (d − 1)τ)] where integer τ is called the time lag.
Takens’ theorem says that, if d is large enough, the vector series y(t) repro-
duces many of the important dynamical characteristics of the original series,
X(t). Thus, one does not need the original vector series in order to analyse
many of the system properties of the data series. A scalar function s(t) de-
scribing the system is all that is necessary. To apply this theorem effectively,
good choices for the lag τ and embedding dimension d are needed. Choice of
τ should provide low correlation between adjacent elements in the embedded
vector (so that the original data series is not mimicked) without being too long.
One can use the first minimum of the average mutual information function
I(t) = −∑

ij pij(τ) ln pij(τ)
pipj

for some partition on the real numbers pi is the
probability to find a time series value in the i−th interval, and pij is the joint
probability that an observation falls into the i−th interval and the observation
time τ later falls into the j−th. I(t) measures the average amount of informa-
tion (bits) shared by two meaurements. According to the embedding theorem,
the choice of d requires a priori knowledge of dimension (dF ) of the original
attractor, which is unrealistic for experimental data. When d is chosen arbitrar-
ily and happens to be too small as compared to dF of the original attractor, this
may sometimes result is so-called false nearest neighbours (FNN) in the re-
constructed phase space [Broomhead and King, 1986]. Chaos arises from the
exponential growth of infinitesimal perturbations, together with global folding
mechanisms to guarantee boundedness of the solutions. This exponential insta-
bility is characterized by the spectrum of Lyapunov’s Exponents (LEs). LEscan
be considered as an estimation of the speed of convergence or divergence of
the trajectors in a dynamic system near its attractor set. LEs are useful to clas-
sify the asintotical behaviour of the orbits of an dynamical system and gives us
a qualitative and quantitative characterization of the beahviour of the system.
Each dynamic system, which attractor has at least one positive LE, is defined
as “chaotic”, and its numerical value gives us the time t after which the mech-
anisms of the system turn unforseeable. The spectrum of LEs can be defined
for continuous and discrete systems and their cardinality is equal to the embed-
ding dimension. A LE is the radius of medium exponential divergence of two
adjacent orbits and can be computed as λmax = limt→∞,|Δx|→0

1
t ln |Δx(X0,t)|

Δx0
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where Δx(X0, t) represents the separation of two orbits. LE describes the be-
havior of two nearest points along a direction in the embedding dimension in
the time domain; if the points go away then LE will be positive, else negative
(null if the distance is constant) [Parker and Chua, 1986]. When a LE is pos-
itive, it exists an Horizon of Predictability (HOP); for t > HOP the prediction
breaks down. HOP can be calculate by thorizon ∼ O( log(a)

LLE ) where LLE is the
largest LE and log(a) represents the requested time of variation (average) by
two orbits to distance (% dependent by available data) In this work, since data
change very quickly, we have choice a divergence of 3.5%.

3. Chaos & MLP for anticipation disruption

In this work we have analyze two disrupted shots (#55548 and #61439) and
non-disrupted one (#62488). In order to apply chaos theory, we have verified
that the Power Spectral Density (PSD) results distributed on several frequen-
cies. To calculate τ and d we have applied: (i) the mutual information method
considering first minimum (Figure 1); (ii) the FNN method considering the
dimension which correspond the null value of the function (Figure 2).

Table 1 reports the achieved results for the embedding parameters.

Figure 1. Mutual information for shot
#55548. τ=4.

Figure 2. Application of FNN method for
the shots under study.

To reduce the computational complexity, we have chosen the dimension that
corre-sponds to a percentage of FFN < 1%. In our case, for the examined shots,
m is reduced to 5. Table 2 shows LEs for dimension 5.
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Table 1. Embedding parameters for shots
under study.

Table 2. LEs for dimension 5.

Because λmax is positive, the time series are chaotic. Once d and τ are
computed, starting from X̄(t) = [x̄(t), x̄(t−T0), . . . , x̄(t− (k− 1)T0)] ∈ R

k

we make the other five ȳ(t) = [s(t), s(t+τ), . . . , s(t+(d−1)τ)]. In addition,
we can compute HOP for each recomputed shot. By means of HOP we have
resampled the original shots. In this way, each sample falls in the optimal time
window prediction.

For the training step, we have train the MLP (5 inputs, 1 output and 2 hid-
den layers - logsig - logsig - purelin; Levenberg & Marquardt’s learning al-
gorithm) by using the original shots: five consecutive samples for inputs (five
is the embedding dimension!) and the following sample for output. In par-
ticular, we have made a net for the worst shot (#55548). In the testing step,
we have used the resampled shots. Figure 3 shows the performance of the net
concerning shot #61439. In this case the root means square error (RMSE) is
7.6888 exp−005 [Tesla/Ampere] (7.5%).

Figure 3. Performance of MLP for shot #61439

Shot Time Embedding
lag (τ) dimension (m)

#55548 4 8
#61439 20 8
#62488 1 9

Shot λmax

#55548 0.0553
#61439 0.01176
#62488 0.2389
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4. Conclusions

In this paper a novel technique of early prediction of plasma disruption in
tokamak reactors which uses Neural Networks and Chaos theory. In particular,
dynamical reconstruction and chaos theory have been considered for choosing
the time window of prediction and to select the inputs set for the prediction
system. MLP nets have been exploited for predicting the incoming of disrup-
tion. The time series under study are chaotic and the time windows prediction
have supplied a good prediction of the Mode-Lock in terms of RMSE. The pre-
diction of Mode Lock, strongly linearly correlated with the ttd, which is not
directly measurable by a physical sensor, in order to in-time alarm the control
system.
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